Appendix

1 Basic convexity inequalities

The following inequalities are classical. See Nesterov 1998 for proofs. They hold for all x & y, when $f \in S_{s,L}^{1,1}$.

(B1)
$$f(y) \le f(x) + \langle f'(x), y - x \rangle + \frac{L}{2} ||x - y||^2$$

(B2)
$$f(y) \ge f(x) + \langle f'(x), y - x \rangle + \frac{1}{2L} \|f'(x) - f'(y)\|^2$$

(B3) $f(y) \ge f(x) + \langle f'(x), y - x \rangle + \frac{s}{2} \|x - y\|^2$
(B4) $\langle f'(x) - f'(y), x - y \rangle \ge \frac{1}{L} \|f'(x) - f'(y)\|^2$

(B3)
$$f(y) \ge f(x) + \langle f'(x), y - x \rangle + \frac{s}{2} ||x - y||^2$$

(B4)
$$\langle f'(x) - f'(y), x - y \rangle \ge \frac{1}{L} \|f'(x) - f'(y)\|^2$$

(B5)
$$\langle f'(x) - f'(y), x - y \rangle \ge s \|x - y\|^2$$

We also use variants of B2 and B3 that are summed over each f_i , with $x = \phi_i$ and y = w:

$$f(w) \ge \frac{1}{n} \sum_{i} f_i(\phi_i) + \frac{1}{n} \sum_{i} \langle f'_i(\phi_i), w - \phi_i \rangle + \frac{1}{2Ln} \sum_{i} \|f'(x) - f'(y)\|^2$$

$$f(w) \ge \frac{1}{n} \sum_{i} f_i(\phi_i) + \frac{1}{n} \sum_{i} \langle f'_i(\phi_i), w - \phi_i \rangle + \frac{s}{2n} \sum_{i} \|w - \phi_i\|^2$$

These are used in the following negated and rearranged form:

$$-f(w) - T_2 = -f(w) + \frac{1}{n} \sum_i f_i(\phi_i) + \frac{1}{n} \sum_i \langle f_i'(\phi_i), w - \phi_i \rangle$$
(B6)
$$\therefore -f(w) - T_2 \leq -\frac{s}{2n} \sum_i \|w - \phi_i\|^2$$

(B7)
$$-f(w) - T_2 \le -\frac{1}{2Ln} \sum_{i} \|f'(w) - f'(\phi_i)\|^2$$
.

$\mathbf{2}$ Lyapunov term bounds

Simplifying each Lyapunov term is fairly straight forward. We use extensively that $\phi_i^{(k+1)} = w$, and that $\phi_i^{(k+1)} = \phi_i$ for $i \neq j$. Note also that

(B8)
$$w^{(k+1)} - w = \frac{1}{n}(w - \phi_j) + \frac{1}{\alpha sn} \left[f'_j(\phi_j) - f'_j(w) \right].$$

Lemma 6. Between steps k and k+1, the $T_1 = f(\bar{\phi})$ term changes as follows:

$$E[T_1^{(k+1)}] - T_1 \le \frac{1}{n} \langle f'(\bar{\phi}), w - \bar{\phi} \rangle + \frac{L}{2n^3} \sum_i \|w - \phi_i\|^2.$$

Proof. First we use the standard Lipschitz upper bound (B1):

$$f(y) \le f(x) + \langle f'(x), y - x \rangle + \frac{L}{2} ||x - y||^2.$$

We can apply this using $y = \bar{\phi}^{(k+1)} = \bar{\phi} + \frac{1}{n}(w - \phi_j)$ and $x = \bar{\phi}$:

$$f(\bar{\phi}^{(k+1)}) \leq f(\bar{\phi}) + \frac{1}{n} \langle f'(\bar{\phi}), w - \phi_j \rangle + \frac{L}{2n^2} \|w - \phi_j\|^2.$$

We now take expectations over j, giving:

$$E[f(\bar{\phi}^{(k+1)})] - f(\bar{\phi}) \le \frac{1}{n} \langle f'(\bar{\phi}), w - \bar{\phi} \rangle + \frac{L}{2n^3} \sum_{i} \|w - \phi_i\|^2.$$

Lemma 7. Between steps k and k+1, the $T_2=-\frac{1}{n}\sum_i f_i(\phi_i)-\frac{1}{n}\sum_i \langle f_i'(\phi_i), w-\phi_i\rangle$ term changes as follows:

$$E[T_2^{(k+1)}] - T_2 \leq -\frac{1}{n}T_2 - \frac{1}{n}f(w)$$

$$+ \left(\frac{1}{\alpha} - \frac{\beta}{n}\right)\frac{1}{sn^3}\sum_i \|f_i'(w) - f_i'(\phi_i)\|^2$$

$$+ \frac{1}{n}\left\langle \bar{\phi} - w, f'(w) \right\rangle - \frac{1}{n^3}\sum_i \left\langle f_i'(w) - f_i'(\phi_i), w - \phi_i \right\rangle.$$

Proof. We introduce the notation $T_{21} = -\frac{1}{n} \sum_i f_i(\phi_i)$ and $T_{22} = -\frac{1}{n} \sum_i \langle f_i'(\phi_i), w - \phi_i \rangle$. We simplify the change in T_{21} first using $\phi_j^{(k+1)} = w$:

$$T_{21}^{(k+1)} - T_{21} = -\frac{1}{n} \sum_{i} f_{i}(\phi_{i}^{(k+1)}) + \frac{1}{n} \sum_{i} f_{i}(\phi_{i})$$

$$= -\frac{1}{n} \sum_{i} f_{i}(\phi_{i}) + \frac{1}{n} f_{j}(\phi_{j}) - \frac{1}{n} f_{j}(w) + \frac{1}{n} \sum_{i} f_{i}(\phi_{i})$$

$$= \frac{1}{n} f_{j}(\phi_{j}) - \frac{1}{n} f_{j}(w)$$

Now we simplify the change in T_{22} :

$$T_{22}^{(k+1)} - T_{22} = -\frac{1}{n} \sum_{i} \left\langle f_i'(\phi_i^{(k+1)}), w^{(k+1)} - w + w - \phi_i^{(k+1)} \right\rangle - T_{22}$$

$$\therefore T_{22}^{(k+1)} - T_{22} = -\frac{1}{n} \sum_{i} \left\langle f_i'(\phi_i^{(k+1)}), w - \phi_i^{(k+1)} \right\rangle - T_{22} - \frac{1}{n} \sum_{i} \left\langle f_i'(\phi_i^{(k+1)}), w^{(k+1)} - w \right\rangle. \tag{1}$$

We now simplying the first two terms using $\phi_j^{(k+1)} = w$:

$$-\frac{1}{n}\sum_{i} \left\langle f'_{i}(\phi_{i}^{(k+1)}), w - \phi_{i}^{(k+1)} \right\rangle - T_{22} = T_{22} - \frac{1}{n} \left\langle f'_{j}(\phi_{j}), w - \phi_{j} \right\rangle + \frac{1}{n} \left\langle f'_{j}(w), w - w \right\rangle - T_{22}$$

$$= \frac{1}{n} \left\langle f'_{j}(\phi_{j}), w - \phi_{j} \right\rangle.$$

The last term of Equation 1 expands further:

$$-\frac{1}{n}\sum_{i}\left\langle f'_{i}(\phi_{i}^{(k+1)}), w^{(k+1)} - w \right\rangle = -\frac{1}{n}\left\langle \sum_{i} f'_{i}(\phi_{i}) - f'_{j}(\phi_{j}) + f'_{j}(w), w^{(k+1)} - w \right\rangle$$
$$= -\frac{1}{n}\left\langle \sum_{i} f'_{i}(\phi_{i}), w^{(k+1)} - w \right\rangle - \frac{1}{n}\left\langle f'_{j}(w) - f'_{j}(\phi_{j}), w^{(k+1)} - w \right\rangle. (2)$$

The second inner product term in 2 simplifies further using B8:

$$\frac{1}{n} \left\langle f'_{j}(w) - f'_{j}(\phi_{j}), w^{(k+1)} - w \right\rangle = -\frac{1}{n} \left\langle f'_{j}(w) - f'_{j}(\phi_{j}), \frac{1}{n}(w - \phi_{j}) + \frac{1}{\alpha s n} \left[f'_{j}(\phi_{j}) - f'_{j}(w) \right] \right\rangle \\
= -\frac{1}{n^{2}} \left\langle f'_{j}(w) - f'_{j}(\phi_{j}), w - \phi_{j} \right\rangle - \frac{1}{\alpha s n^{2}} \left\langle f'_{j}(w) - f'_{j}(\phi_{j}), f'_{j}(\phi_{j}) - f'_{j}(w) \right\rangle.$$

We simplify the second term:

$$-\frac{1}{\alpha s n^2} \left\langle f'_j(w) - f'_j(\phi_j), f'_j(\phi_j) - f'_j(w) \right\rangle = \frac{1}{\alpha s n^2} \left\| f'_j(w) - f'_j(\phi_j) \right\|^2.$$

Grouping all remaining terms gives:

$$T_{2}^{(k+1)} - T_{2} \leq \frac{1}{n} f_{j}(\phi_{j}) + \frac{1}{n} \left\langle f'_{j}(\phi_{j}), w - \phi_{j} \right\rangle - \frac{1}{n} f_{j}(w)$$

$$+ \frac{1}{\alpha s n^{2}} \left\| f'_{j}(w) - f'_{j}(\phi_{j}) \right\|^{2} - \frac{1}{n^{2}} \left\langle f'_{j}(w) - f'_{j}(\phi_{j}), w - \phi_{j} \right\rangle$$

$$- \frac{1}{n} \left\langle \sum_{i} f'_{i}(\phi_{i}), w^{(k+1)} - w \right\rangle.$$

We now take expectations of each remaining term. For the bottom inner product we use Lemma 1:

$$-\frac{1}{n}\left\langle \sum_{i} f'_{i}(\phi_{i}), w^{(k+1)} - w \right\rangle = \frac{1}{\alpha s n^{2}} \left\langle \sum_{i} f'_{i}(\phi_{i}), f'(w) \right\rangle$$
$$= \frac{1}{n} \left\langle \bar{\phi} - w, f'(w) \right\rangle.$$

Taking expectations of the remaining terms is straight forward. We get:

$$E[T_{2}^{(k+1)}] - T_{2} \leq \frac{1}{n^{2}} \sum_{i} f_{i}(\phi_{i}) - \frac{1}{n} f(w) + \frac{1}{n^{2}} \sum_{i} \langle f'_{i}(\phi_{i}), w - \phi_{i} \rangle$$

$$+ \frac{1}{\alpha s n^{3}} \sum_{i} \|f'_{i}(w) - f'_{i}(\phi_{i})\|^{2} - \frac{1}{n^{3}} \sum_{i} \langle f'_{i}(w) - f'_{i}(\phi_{i}), w - \phi_{i} \rangle$$

$$+ \frac{1}{n} \langle \bar{\phi} - w, f'(w) \rangle.$$

Lemma 8. Between steps k and k+1, the $T_3 = -\frac{s}{2n} \sum_i \|w - \phi_i\|^2$ term changes as follows:

$$E[T_3^{(k+1)}] - T_3 = -(1 + \frac{1}{n}) \frac{1}{n} T_3 + \frac{1}{\alpha n} \langle f'(w), w - \bar{\phi} \rangle - \frac{1}{2\alpha^2 s n^3} \sum_i \|f_i'(\phi_i) - f_i'(w)\|^2.$$

Proof. We expand as:

$$T_{3}^{(k+1)} = -\frac{s}{2n} \sum_{i} \left\| w^{(k+1)} - \phi_{i}^{(k+1)} \right\|^{2}$$

$$= -\frac{s}{2n} \sum_{i} \left\| w^{(k+1)} - w + w - \phi_{i}^{(k+1)} \right\|^{2}$$

$$= -\frac{s}{2} \left\| w^{(k+1)} - w \right\|^{2} - \frac{s}{2n} \sum_{i} \left\| w - \phi_{i}^{(k+1)} \right\|^{2} - \frac{s}{n} \sum_{i} \left\langle w^{(k+1)} - w, w - \phi_{i}^{(k+1)} \right\rangle. \tag{4}$$

We expand the three terms on the right separately. For the first term:

$$-\frac{s}{2} \| w^{(k+1)} - w \|^{2} = -\frac{s}{2} \| \frac{1}{n} (w - \phi_{j}) + \frac{1}{\alpha s n} (f_{j}(\phi_{j}) - f_{j}(w)) \|^{2}$$

$$= -\frac{s}{2n^{2}} \| w - \phi_{j} \|^{2} - \frac{1}{2\alpha^{2} s n^{2}} \| f_{j}(\phi_{j}) - f_{j}(w) \|^{2}$$

$$-\frac{1}{\alpha n^{2}} \langle f_{j}(\phi_{j}) - f_{j}(w), w - \phi_{j} \rangle.$$
(5)

For the second term of Equation 4, using $\phi_j^{(k+1)} = w$:

$$-\frac{s}{2n} \sum_{i} \left\| w - \phi_{i}^{(k+1)} \right\|^{2} = -\frac{s}{2n} \sum_{i} \left\| w - \phi_{i} \right\|^{2} + \frac{s}{2n} \left\| w - \phi_{j} \right\|^{2}$$
$$= T_{3} + \frac{s}{2n} \left\| w - \phi_{j} \right\|^{2}.$$

For the third term of Equation 4:

$$-\frac{s}{n}\sum_{i}\left\langle w^{(k+1)}-w,w-\phi_{i}^{(k+1)}\right\rangle = -\frac{s}{n}\sum_{i}\left\langle w^{(k+1)}-w,w-\phi_{i}\right\rangle + \frac{s}{n}\left\langle w^{(k+1)}-w,w-\phi_{j}\right\rangle
= -s\left\langle w^{(k+1)}-w,w-\frac{1}{n}\sum_{i}\phi_{i}\right\rangle + \frac{s}{n}\left\langle w^{(k+1)}-w,w-\phi_{j}\right\rangle. (6)$$

The second inner product term in Equation 6 becomes (using B8)

$$\frac{s}{n} \left\langle w^{(k+1)} - w, w - \phi_j \right\rangle = \frac{s}{n} \left\langle \frac{1}{n} (w - \phi_j) + \frac{1}{\alpha s n} \left[f_j'(\phi_j) - f_j'(w) \right], w - \phi_j \right\rangle
= \frac{s}{n^2} \left\| w - \phi_j \right\|^2 + \frac{1}{\alpha n^2} \left\langle f_j'(\phi_j) - f_j'(w), w - \phi_j \right\rangle.$$

Notice that the inner product term here cancels with the one in 5.

Now we can take expectations of each remaining term. Recall that $E[w^{(k+1)}] - w = -\frac{1}{\alpha sn}f'(w)$, so the first inner product term in 6 becomes:

$$-sE\left[\left\langle w^{(k+1)} - w, w - \frac{1}{n} \sum_{i} \phi_{i} \right\rangle\right] = \frac{1}{\alpha n} \left\langle f'(w), w - \bar{\phi} \right\rangle.$$

All other terms don't simplify under expectations. So the result is:

$$E[T_3^{(k+1)}] - T_3 = \left(\frac{1}{2} - \frac{1}{n}\right) \frac{s}{n^2} \sum_i \|w - \phi_i\|^2 + \frac{1}{\alpha n} \left\langle f'(w), w - \bar{\phi} \right\rangle - \frac{1}{2\alpha^2 s n^3} \sum_i \|f_i(\phi_i) - f_i(w)\|^2.$$

Lemma 9. Between steps k and k+1, the $T_4 = \frac{s}{2n} \sum_i \|\bar{\phi} - \phi_i\|^2$ term changes as follows:

$$E[T_4^{(k+1)}] - T_4 = -\frac{s}{2n^2} \sum_i \|\bar{\phi} - \phi_i\|^2 + \frac{s}{2n} \|\bar{\phi} - w\|^2 - \frac{s}{2n^3} \sum_i \|w - \phi_i\|^2.$$

Proof. Note that $\bar{\phi}^{(k+1)} - \bar{\phi} = \frac{1}{n}(w - \phi_j)$, so:

$$\begin{split} T_4^{(k+1)} &= \frac{s}{2n} \sum_i \left\| \bar{\phi}^{(k+1)} - \bar{\phi} + \bar{\phi} - \phi_i^{(k+1)} \right\|^2 \\ &= \frac{s}{2n} \sum_i \left(\left\| \bar{\phi}^{(k+1)} - \bar{\phi} \right\|^2 + \left\| \bar{\phi} - \phi_i^{(k+1)} \right\|^2 + 2 \left\langle \bar{\phi}^{(k+1)} - \bar{\phi}, \bar{\phi} - \phi_i^{(k+1)} \right\rangle \right) \\ &= \frac{s}{2n} \sum_i \left(\left\| \frac{1}{n} (w - \phi_j) \right\|^2 + \left\| \bar{\phi} - \phi_i^{(k+1)} \right\|^2 + \frac{2}{n} \left\langle w - \phi_j, \bar{\phi} - \phi_i^{(k+1)} \right\rangle \right). \end{split}$$

Now using $\frac{1}{n}\sum_i \left(\bar{\phi} - \phi_i^{(k+1)}\right) = \bar{\phi} - \bar{\phi}^{(k+1)} = -\frac{1}{n}(w - \phi_j)$ to simplify the inner product term:

$$= \frac{s}{2n^{2}} \|w - \phi_{j}\|^{2} + \frac{s}{2n} \sum_{i} \|\bar{\phi} - \phi_{i}^{(k+1)}\|^{2} + \frac{s}{n^{2}} \langle w - \phi_{j}, \phi_{j} - w \rangle$$

$$= \frac{s}{2n^{2}} \|w - \phi_{j}\|^{2} + \frac{s}{2n} \sum_{i} \|\bar{\phi} - \phi_{i}^{(k+1)}\|^{2} - \frac{s}{n} \|w - \phi_{j}\|^{2}$$

$$= \frac{s}{2n} \sum_{i} \|\bar{\phi} - \phi_{i}^{(k+1)}\|^{2} - \frac{s}{2n} \|w - \phi_{j}\|^{2}$$

$$= \frac{s}{2n} \sum_{i} \|\bar{\phi} - \phi_{i}\|^{2} - \frac{s}{2n} \|\bar{\phi} - \phi_{j}\|^{2} + \frac{s}{2n} \|\bar{\phi} - w\|^{2} - \frac{s}{2n^{2}} \|w - \phi_{j}\|^{2}.$$

$$(7)$$

Taking expectations gives the result.

Lemma 10. Let $f \in S_{s,L}$. Then we have:

$$f(x) \ge f(y) + \langle f'(y), x - y \rangle + \frac{1}{2(L-s)} \|f'(x) - f'(y)\|^2 + \frac{sL}{2(L-s)} \|y - x\|^2 + \frac{s}{(L-s)} \langle f'(x) - f'(y), y - x \rangle.$$

Proof. Define the function g as $g(x) = f(x) - \frac{s}{2} ||x||^2$. Then the gradient is g'(x) = f'(x) - sx. g has a lipschitz gradient with with constant L - s. By convexity we have:

$$g(x) \ge g(y) + \langle g'(y), x - y \rangle + \frac{1}{2(L-s)} \|g'(x) - g'(y)\|^2.$$

Now replacing g with f

$$f(x) - \frac{s}{2} \|x\|^2 \ge f(y) - \frac{s}{2} \|y\|^2 + \langle f'(y) - sy, x - y \rangle + \frac{1}{2(L-s)} \|f'(x) - sx - f'(y) + sy\|^2$$
.

Note that

$$\frac{1}{2(L-s)} \|f'(x) - sx - f'(y) + sy\|^2 = \frac{1}{2(L-s)} \|f'(x) - f'(y)\|^2 + \frac{s^2}{2(L-s)} \|y - x\|^2$$
$$\frac{s}{(L-s)} \langle f'(x) - f'(y), y - x \rangle,$$

so:

$$f(x) \geq f(y) + \langle f'(y), x - y \rangle + \frac{1}{2(L-s)} \|f'(x) - f'(y)\|^2 + \frac{s^2}{2(L-s)} \|y - x\|^2 + \frac{s}{2} \|x\|^2 - \frac{s}{2} \|y\|^2 + \frac{s}{(L-s)} \langle f'(x) - f'(y), y - x \rangle - s \langle y, x - y \rangle.$$

Now using:

$$\frac{s}{2} \left\| x \right\|^2 - s \left\langle y, x \right\rangle = -\frac{s}{2} \left\| y \right\|^2 + \frac{s}{2} \left\| x - y \right\|^2,$$

we get:

$$f(x) \geq f(y) + \langle f'(y), x - y \rangle + \frac{1}{2(L-s)} \|f'(x) - f'(y)\|^2 + \frac{s^2}{2(L-s)} \|x - y\|^2 - s \|y\|^2 + \frac{s}{2} \|x - y\|^2 + \frac{s}{(L-s)} \langle f'(x) - f'(y), y - x \rangle + s \langle y, y \rangle$$

Note the norm y terms cancel, and:

$$\frac{s}{2} \|x - y\|^2 + \frac{s^2}{2(L - s)} \|x - y\|^2 = \frac{(L - s)s + s^2}{2(L - s)} \|x - y\|^2$$
$$= \frac{sL}{2(L - s)} \|x - y\|^2.$$

So:

$$f(x) \geq f(y) + \langle f'(y), x - y \rangle + \frac{1}{2(L-s)} \|f'(x) - f'(y)\|^2 + \frac{sL}{2(L-s)} \|y - x\|^2 + \frac{s}{(L-s)} \langle f'(x) - f'(y), y - x \rangle$$

Corollary 11. Take $f(x) = \frac{1}{n} \sum_i f_i(x)$, with the big data condition holding with constant β . Then for any x and ϕ_i vectors:

П

$$f(x) \geq \frac{1}{n} \sum_{i} f_{i}(\phi_{i}) + \frac{1}{n} \sum_{i} \langle f'_{i}(\phi_{i}), x - \phi_{i} \rangle + \frac{\beta}{2sn^{2}} \sum_{i} \|f'_{i}(x) - f'_{i}(\phi_{i})\|^{2} + \frac{\beta L}{2n^{2}} \sum_{i} \|x - \phi_{i}\|^{2} + \frac{\beta}{n^{2}} \sum_{i} \langle f'_{i}(x) - f'_{i}(\phi_{i}), \phi_{i} - x \rangle.$$

Proof. We apply Lemma 10 to each f_i , but instead of using the actual constant L, we use $\frac{sn}{\beta} + s$, which under the big data assumption is larger than L:

$$f_i(x) \ge f_i(\phi_i) + \langle f_i'(\phi_i), x - \phi_i \rangle + \frac{\beta}{2sn} \|f_i'(x) - f_i'(\phi_i)\|^2 + \frac{\beta L}{2n} \|x - \phi_i\|^2 + \frac{\beta}{n} \langle f_i'(x) - f_i'(\phi_i), \phi_i - x \rangle.$$

Averaging over i gives the result.

3 Lower complexity bounds

In this section we use the following technical assumption, as used in Nesterov (1998):

Assumption 1: An optimization method at step k may only invoke the oracle with a point $x^{(k)}$ that is of the form:

$$x^{(k)} = x^{(0)} + \sum_{i} a_i g^{(i)},$$

where $g^{(i)}$ is the derivative returned by the oracle at step i, and $a_i \in R$.

This assumption prevents an optimization method from just guessing the correct solution without doing any work. Virtually all optimization methods fall into under this assumption.

Simple $(1-\frac{1}{n})^k$ bound

Any procedure that minimizes a sum of the form $f(w) = \frac{1}{n} \sum_{i} f_i(w)$ by uniform random access of f_i is restricted by the requirement that it has to actually see each term at least once in order to find the minimum. This leads to a $\left(1 - \frac{1}{n}\right)^k$ rate in expectation. We now formalize such an argument. We will work in \mathbb{R}^n , matching the dimensionality of the problem to the number of terms in the summation.

Theorem 12. For any $f \in FS_{1,n,n}^{1,1}(\mathbb{R}^n)$, we have that a k step optimization procedure gives:

$$E[f(w)] - f(w^*) \ge \left(1 - \frac{1}{n}\right)^k \left(f(w^{(0)}) - f(w^*)\right)$$

Proof. We will exhibit a simple worst-case problem. Without loss of generality we assume that the first oracle access by the optimization procedure is at w = 0. In any other case, we shift our space in the following argument appropriately.

Let $f(w) = \frac{1}{n} \sum_i \left[\frac{n}{2} (w_i - 1)^2 + \frac{1}{2} ||w||^2 \right]$. Then clearly the solution is $w_i = \frac{1}{2}$ for each i, with minimum of $f(w^*) = \frac{n}{4}$. For w = 0 we have $f(0) = \frac{n}{2}$. Since the derivative of each f_j is 0 on the ith component if we have not yet seen f_i , the value of each w_i remains 0 unless term i has been seen.

Let $v^{(k)}$ be the number of unique terms we have not seen up to step k. Between steps k and k+1, v decreases by 1 with probably $\frac{v}{n}$ and stays the same otherwise. So

$$E[v^{(k+1)}|v^{(k)}] = v^{(k)} - \frac{v^{(k)}}{n} = \left(1 - \frac{1}{n}\right)v^{(k)}.$$

So we may define the sequence $X^{(k)} = \left(1 - \frac{1}{n}\right)^{-k} v^{(k)}$, which is then martingale with respect to v, as

$$\begin{split} E[X^{(k+1)}|v^{(k)}] &= \left(1 - \frac{1}{n}\right)^{-k-1} E[v^{(k+1)}|v^{(k)}] \\ &= \left(1 - \frac{1}{n}\right)^{-k} v^{(k)} \\ &= X^{(k)}. \end{split}$$

Now since k is chosen in advance, stopping time theory gives that $E[X^{(k)}] = E[X^{(0)}]$. So

$$E[\left(1 - \frac{1}{n}\right)^{-k} v^{(k)}] = n,$$

$$\therefore E[v^{(k)}] = \left(1 - \frac{1}{n}\right)^k n.$$

By Assumption 1, the function can be at most minimized over the dimensions seen up to step k. The seen dimensions contribute a value of $\frac{1}{4}$ and the unseen terms $\frac{1}{2}$ to the function. So we have that:

$$E[f(w^{(k)})] - f(w^*) \ge \frac{1}{4} \left(n - E[v^{(k)}] \right) + \frac{1}{2} E[v^{(k)}] - \frac{n}{4}$$

$$= \frac{1}{4} E[v^{(k)}]$$

$$= \left(1 - \frac{1}{n} \right)^k \frac{n}{4}$$

$$= \left(1 - \frac{1}{n} \right)^k \left[f(w^{(0)}) - f(w^*) \right].$$

Minimization of non-strongly convex finite sums

It is known that the class of convex, continuous & differentiable problems, with L-Lipschitz continuous derivatives $F_L^{1,1}(R^m)$, has the following lower complexity bound when k < m:

$$f(x^{(k)}) - f^{(k)}(x^*) \ge \frac{L \|x^{(0)} - x^*\|^2}{8(k+1)^2},$$

which is proved via explicit construction of a worst-case function where it holds with equality. Let this worst case function be denoted $h^{(k)}$ at step k.

We will show that the same bound applies for the finite-sum case, on a per pass equivalent basis, by a simple construction.

Theorem 13. The following lower bound holds for k a multiple of n:

$$f(x^{(k)}) - f^{(k)}(x^*) \ge \frac{L \|x^{(0)} - x^*\|^2}{8(\frac{k}{n} + 1)^2},$$

when f is a finite sum of n terms $f(x) = \frac{1}{n} \sum_i f_i(x)$, with each $f_i \in F_L^{1,1}(\mathbb{R}^m)$, and with m > kn, under the oracle model where the optimization method may choose the index i to access at each step.

Proof. Let h_i be a copy of $h^{(k)}$ redefined to be on the subset of dimensions i+jn, for j=1...k, or in other words, $h_i^{(k)}(x) = h^{(k)}([x_i, x_{i+n}, \dots x_{i+jn}, \dots])$. Then we will use:

$$f^{(k)}(x) = \frac{1}{n} \sum_{i} h_i^{(k)}(x)$$

as a worst case function for step k.

Since the derivatives are orthogonal between h_i and h_j for $i \neq j$, by Assumption 1, the bound on $h_i^{(k)}(x^{(k)}) - h_i^{(k)}(x^*)$ depends only on the number of times the oracle has been invoked with index i, for each i. Let this be denoted c_i . Then we have that:

$$f(x^{(k)}) - f^{(k)}(x^*) \ge \frac{L}{8n} \sum_{i} \frac{\|x^{(0)} - x^*\|_{(i)}^2}{(c_i + 1)^2}.$$

Where $\|\cdot\|_{(i)}^2$ is the norm on the dimensions i+jn for $j=1\ldots k$. We can combine these norms into a regular Euclidean norm:

$$f(x^{(k)}) - f^{(k)}(x^*) \ge \frac{L \|x^{(0)} - x^*\|^2}{8n} \sum_{i} \frac{1}{(c_i + 1)^2}.$$

Now notice that $\sum_{i} \frac{1}{(c_i+1)^2}$ under the constraint $\sum c_i = k$ is minimized when each $c_i = \frac{k}{n}$. So we have:

$$f(x^{(k)}) - f^{(k)}(x^*) \ge \frac{L \|x^{(0)} - x^*\|^2}{8n} \sum_{i} \frac{1}{(\frac{k}{n} + 1)^2},$$
$$\frac{L \|x^{(0)} - x^*\|^2}{8(\frac{k}{n} + 1)^2},$$

which is the same lower bound as for k/n iterations of an optimization method on f directly.