Appendix

1 Basic convexity inequalities

The following inequalities are classical. See Nesterov 1998 for proofs. They hold for all z & y, when f € Sgli
(B1) f(y) < f(@)+ (' @),y —2) + 5 ||lz —y|*
(B2) f(y) > f(@) + (f'(@),y—2) + 3 | /(@) = £ W)
(B3) f(y) > f(@) + (f'(z),y — 2) + 5 & — g
(BY) (f'(@)— ' e—y) > LI (@) - FWI
(B5) (f'(x) = ['(y),x—y) > sz —y|

We also use variants of B2 and B3 that are summed over each f;, with x = ¢; and y = w:

2 D)+ 60w =0+ 5 ST~ 1 Gl
> 2S00+ S 6D w— 6+ 53 w6

These are used in the following negated and rearranged form:

—f(w) =Ty = Zfz (6:) + Z<f (6i),w — ¢s)

(B6) —flw) =Ty < —%ZHU’—@H
(B7) —f(w)-Tp < 2LnZHf o)l

2 Lyapunov term bounds

(k+1)

Simplifying each Lyapunov term is fairly straight forward. We use extensively that (;5 = w, and that

¢(k+1) ¢; for i # j. Note also that

(B8) wh) —w= 1w~ 6;) + — [71(ey) ~ fj(w)].

Lemma 6. Between steps k and k+ 1, the Ty = f(¢) term changes as follows:
B =T < 2 (F@w=8) + 55 3 I = il
Proof. First we use the standard Lipschitz upper bound (B1):
F) < @)+ (F@)y =) + 5 o~
We can apply this using y = ¢+t = ¢ + %(w — ¢;) and x = ¢

F@E) < f(@) 4~

n

_ L 9
(F'(@)w—=6;) + 5 llw = &lI"
We now take expectations over j, giving:

B G)] = £6) < = (F@w =) + 55 3 o= 6l

Lemma 7. Between steps k and k+ 1, the Ty = —% > fildi) — % Yo (fi(di), w — ¢i) term changes as follows:

1 1
BT -1 < —~ Ty~ f(w)

O P=) DI AR

oa n’snd
1

1 -
E<¢—w,f’(w)>—$ (fi(w) = fi(d1),w — i) .

Proof. We introduce the notation Th; = f% > fil@i) and Thy = *%Zi (fi(¢s), w — ¢;). We simplify the
change in Ty, first using ¢§.k+1) = w:

T -y = —lZfi(@kH))‘FlZfi(@)
= _*Zfz ¢z + fj(¢]) —Jj Zfz ¢z
= Efj(ﬁbj) - ﬁfj(w)

Now we simplify the change in T5o:

T(k+1 _ _7Z< k+1) wF D — o +w — ¢ (k+1) > Ty

Y T Y (= o) T LY (R))

i
We now simplying the first two terms using qﬁg. +

ffz< F(@*D), 7¢Ek+1)>7T22 = T2277<f(¢3)w—¢j>+%<f;(w),w—w>—T22
1 !
= E<fj(¢j)71U—¢j>-

The last term of Equation 1 expands further:

_Z Z< ¢(k+1 wk+HD) _ w> _2 <Zf 6:) — F1(65) + Fl(w),w (k+1) _ >
K <Zf S “’> - o (1) = £ —).)

The second inner product term in 2 simplifies further using BS8:

5 (At = fe Y <) = 2 (fitw) = fer) o= 0) + ain 506 - 1])

1 ! / / ! !
_ﬁ<fj(w)_fj(¢j)vw_¢j> asn2 <f3() fj(¢j)afj(¢j)_fj(w)>~

We simplify the second term:

L i) = F69), Fi(5) —)y = — 5 [|fiw) ~ 6]

asn?

Grouping all remaining terms gives:

T - < f(¢]) <f(¢g)w—¢j>—%fj(w)

b) = H6I - 5 () - fé).w-s)

ﬁ <Z fz'/((bi)’w(k+1) - w> :

2

We now take expectations of each remaining term. For the bottom inner product we use Lemma 1:

_<Zf),k > . <Zf{(¢i),f’(w)>

= LG).

Taking expectations of the remaining terms is straight forward. We get:

k
BT -1, < nijfz) —ff +7Z W — ;)
+ asn:&ZHf 2 n3z i) w — bi)
O
Lemma 8. Between steps k and k+1, the Ty = —5- >, [|[w — ¢ill” term changes as follows:
1.1
ET -7y = —(14-)-T
(157" - T A+) -Ts
Loy L 1) — (w12
Proof. We expand as:
(kbt1) _ S (k1) _ 4k+D)||?
A o
_ _5 (k+1) _ k)P
TS I o
_ S, k1) _ H H (k+1)H2 _ 3 (k+1) _ _ (k1)
5 Hw w Z —¢; nzz:<w w,w— @, > (4)
We expand the three terms on the right separately. For the first term:
2 st 1 2
Sl —u| = S|+ (fj(¢j) — fi(w))
s 2
= - 2n lw — ¢5]|* = Sazanz 1i(d5) = fi (W)l
- an2 <fj(¢y) fj(w)vw_¢j>~ (5)
For the second term of Equation 4, using ?; (k+1) — p;
k41 S S
H S| = S = ol w6y

S 2
= Th+ — — &%
e]

For the third term of Equation 4:

_% Z <w(k+1) —w,w— ¢§k+1)> = —% Z <w(k+1) —w,w — ¢i> + % <w(k+1) T ¢j>
_ s< (k+1) ww—z¢z> < (k+1) w,w—¢j>. (6)

The second inner product term in Equation 6 becomes (using BS):

2wt —ww—gy) = 2 <}1<w — 0+ — [£165) — Fiw)] w ¢>j>

n n
1

= Sl =gl + — (£1(65) — fjw),w - b5).

Notice that the inner product term here cancels with the one in 5.

Now we can take expectations of each remaining term. Recall that E[w**D] —w = —-L f'(w), so the first

inner product term in 6 becomes:

<w(k+1) —w,w— :LZ@N = % (f'(w),w—¢).

All other terms don’t simplify under expectations. So the result is:

—sE

(k+1) 1 10s 12
BT -1y = (§_ﬁ)ﬁ2‘|w_¢l|‘
1, _ 1)
%<f (w),w—¢>—WZIIfi(@)—fi(w)ll .
O
Lemma 9. Between steps k and k + 1, the Ty = 5=, ||gz_5— ngiHQ term changes as follows:
(k+1) _ s 7 2 S 1z 2 S 2
E[T,]_T4__ﬁz,’|¢_¢i’| +%H¢—WH —ﬁZHW—@” :
Proof. Note that ¢¢*+Y) — ¢ = L(w — ¢;), so:
(kD) _ S N gtk 75 sk
ZaR P
s _ 2 _ 2 _ _
= = <H¢(k+1) _¢H +H¢_¢Ek+1)H +2<¢(k+1) _¢7¢_¢Ek+l)>)
2
_ S Lo s : (k+1>H2 2 b 5 kD)
> M (T e R e)L
Now using 1 3~ ((;3 - ¢Ek+1)) =¢— ¢+ = —L(y — ¢;) to simplify the inner product term:
_ S 2, S S (k|| S
= galv-ailf e g S o= o+ Gw-ose-u
- S 12 S T (k+1) 2 s 12
= oz lw—l +%;H¢—¢i | =2l = g5l
_ 5 T (k+1)“2_i e
2n§;H¢ o o lw =&l
s - 2 S - 2 S |- 2 s 2
= gp 2 Mool =g lle = ol ™+ g llo —wll” = 55 = ol (7)
Taking expectations gives the result. O
Lemma 10. Let f € S5 1. Then we have:
F@) > F0) 4 W) w =)+ g 1 @) = PO+ g =l + o (@)~)y —)
> fy R YA y 2 Y -9 Y)Yy —).

Proof. Define the function g as g(z) = f(z) — 5 |z||>. Then the gradient is ¢/(z) = f(z) — sz. g has a lipschitz
gradient with with constant L — s. By convexity we have:

1

2Tl @ -

g(x) > g(y) + (¢'(v),z —y) +

Now replacing g with f:

1

F) = 3 Il 2 1) = Sl + () = s =)+ =y 177) = s =) syl

Note that

1 / / 2 1 / / 2 5? 2
2(L—s) /(@) = sz — f'(y) +syll” = 2(L—s) 1/ (x) = f'W)II” + 2(L —s) ly — |l
T @ = Wy,
SO:
f@) = fly)+{f),z—y)+ ﬁ I/ (x) = £ w)II* + ﬁ ly — «|®
3 el = S+ = @) = @)y =2 = s (e =)
Now using:
S 2 S 2 S 2
Sl = s o) = =3 Il + 5 e — ol
we get:
1@ = f0)+ W) =)+ 5 1@ =PI+ 5 e =l
sl + 5 e = ol + s @) = £)y =) + 5 ()
Note the norm y terms cancel, and:
s 9 52 2 (L —s)s+ s? 9
§H$—y|| +m”$—y” = Wllx—yll
L
= gl

So:

f@) = F)+ e —y) + ﬁ 1) — F I + M—L_) ly — 2

O

Corollary 11. Tuke f(z) = £ 3. fi(z), with the big data condition holding with constant 3. Then for any x
and ¢; vectors:

f@) = —Zfl 6:) + Z<ff<¢i>,) 22||f o)
Zn ol + 5 Z b:), b1 —).

Proof. We apply Lemma 10 to each f; , but instead of using the actual constant L, we use 22 + s, which under
the big data assumption is larger than L:

Fi@) > Fi60) 4 U602 = 60) + 5= 151() — S0P + 5% e = 6l + 2 (71(2) — 7i(00), 61—).

Averaging over i gives the result. O

3 Lower complexity bounds

In this section we use the following technical assumption, as used in Nesterov (1998):
Assumption 1: An optimization method at step k may only invoke the oracle with a point ='®) that is of the

form:
2®) = (0 4 z:aig(i)7
i
where g is the derivative returned by the oracle at step i, and a; € R.
This assumption prevents an optimization method from just guessing the correct solution without doing any
work. Virtually all optimization methods fall into under this assumption.

Simple (1 — %)¥ bound

Any procedure that minimizes a sum of the form f(w) = 7% >_; fi(w) by uniform random access of f; is restricted
by the requirement that it has to actually see each term at least once in order to find the minimum. This leads
to a (1 — %)k rate in expectation. We now formalize such an argument. We will work in R™, matching the
dimensionality of the problem to the number of terms in the summation.

1,1
1,n,n

Theorem 12. For any f € F'S (R™), we have that a k step optimization procedure gives:

st 1) 2 (1- 1) (700 -)

Proof. We will exhibit a simple worst-case problem. Without loss of generality we assume that the first oracle
access by the optimization procedure is at w = 0. In any other case, we shift our space in the following argument
approprately.

Let f(w) = 23, |2 (w; — 1)% + 1 |lw||*|. Then clearly the solution is w; = 1 for each i, with minimum of
f(w*) = %. For w = 0 we have f(0) = 5. Since the derivative of each f; is 0 on the ith component if we have
not yet seen f;, the value of each w; remains 0 unless term ¢ has been seen.

Let v(%) be the number of unique terms we have not seen up to step k. Between steps k and k+1, v decreases

by 1 with probably * and stays the same otherwise. So

So we may define the sequence X *) = (1 - %)_k v®) | which is then martingale with respect to v, as

k-1
B0 ,0] = <11> B[+ Dy ®)]

Il
7 N
—_
|
S|
~

|
>
d/\
Z

= X&),

Now since k is chosen in advance, stopping time theory gives that E[X®*)] = E[X(©)]. So

E[(l - 1) I

n

S Ep®™] = (1 - ;)kn

By Assumption 1, the function can be at most minimized over the dimensions seen up to step k. The seen
dimensions contribute a value of % and the unseen terms % to the function. So we have that:

Y

BLf ()] = f(w") -4

Minimization of non-strongly convex finite sums

It is known that the class of convex, continuous & differentiable problems, with L—Lipschitz continuous deriva-
tives I Ll’l(Rm) , has the following lower complexity bound when k < m:

Lje® - o[

(B)y — p(F) (%
F®) = 9) 2 T

which is proved via explicit construction of a worst-case function where it holds with equality. Let this worst
case function be denoted h(¥) at step k.

We will show that the same bound applies for the finite-sum case, on a per pass equivalent basis, by a simple
construction.

Theorem 13. The following lower bound holds for k a multiple of n:

L H:E(O) — |

8(E +1)2

Fa®) = W) =

3

when f is a finite sum of n terms f(z) = 2 >, f;(x), with each f; € FLl’l(Rm), and with m > kn, under the
oracle model where the optimization method may choose the index ¢ to access at each step.

Proof. Let h; be a copy of h(¥) redefined to be on the subset of dimensions i + jn, for j = 1...k, or in other
words, hgk)(x) = h®) (24, Tign, - - Titjn, ---]). Then we will use:

F9) = = S0)

as a worst case function for step k.
Since the derivatives are orthogonal between h; and h; for i # j, by Assumption 1, the bound on hz(-k)(:c(k)) —

hgk) (z*) depends only on the number of times the oracle has been invoked with index i, for each i. Let this be
denoted ¢;. Then we have that:

Fa®) = (") =

Where H||?Z) is the norm on the dimensions ¢+ jn for j = 1...%k. We can combine these norms into a regular
Euclidean norm:)

L]je® |
>

1
8n Z (i +1)2

i

F@®) = 9 (")

Now notice that . W under the constraint | ¢; = k is minimized when each ¢; = % So we have:

LHx(O) —x* ? 1
8n Z (ﬁJrl)z’

f(g:(’“)) _ f(k)(x*) >

L[— |
8(£+1)2
which is the same lower bound as for k/n iterations of an optimization method on f directly. O

