
Preprint 1–16

A Comparison of Learning Algorithms on the Arcade
Learning Environment

Aaron Defazio aaron.defazio@anu.edu.au
NICTA/Australian National University, Canberra, ACT, Australia

Thore Graepel Thore.Graepel@microsoft.com

Microsoft Research Cambridge, UK

Abstract

Reinforcement learning agents have traditionally been evaluated on small toy problems.
With advances in computing power and the advent of the Arcade Learning Environment,
it is now possible to evaluate algorithms on diverse and difficult problems within a consistent
framework. We discuss some challenges posed by the arcade learning environment which
do not manifest in simpler environments. We then provide a comparison of model-free,
linear learning algorithms on this challenging problem set.

Introduction

Reinforcement learning in general environments is one of the core problems in AI. The goal
of reinforcement learning is to develop agents that learn, interact and adapt in complex
environments, based off of feedback in the form of rewards.

What is a ‘general’ environment? Agents that use raw bit streams exist at one end of
the spectrum (McCallum, 1996), whereas methods highly tuned for specific problem classes
exist at the other. In this work we will be considering the Arcade Learning Environment
(ALE, Bellemare et al. 2013), which consists of a large and diverse set of arcade games.
These games possess substantial structure; their state is presented to the player as low-
resolution images, consisting of basic bitmap graphics. However they are varied enough
that it is difficult to program an agent that work well across games.

The diversity in the arcade learning environment poses challenges that are not well
addressed in the reinforcement learning literature. Methods that work for well-worn test
problems (Mountain Car, Grid-World, etc. ) can not necessarily handle the additional
complexity in the Arcade Learning Environment.

In this work we single out a number of classic and modern reinforcement learning algo-
rithms. These methods were chosen as representative methods in their respective classes.
Each of the methods we consider learns a linear policy or value function, and so they are
on equal footing with regards to the representational power they possess. The restriction
to linear methods is party computational and partly pragmatic. Each of the methods we
consider can in principle use non-linear function approximation instead.

We also evaluated a number of high-level variations on a 5-game subset using SARSA.
These include varying discounting, decay, exploration frequency and length. The results we
present are a useful guidance to other researchers working on the ALE environment.

c© A. Defazio & T. Graepel.



Defazio Graepel

Figure 1: Screen shots from the 55 games considered in this work

1. Environment Overview

The arcade learning environment is a wrapper around the Stella emulator1 for the Atari
2600. It wraps the emulator in a traditional reinforcement learning interface, where a agent
acts in an environment in response to observed states and rewards. Atari 2600 games are
remarkably well suited to being used as reinforcement learning evaluation problems; the
majority of games consist of short, episodic game-play and present a score to the player
which can be interpreted as a reward without issue. More modern video game consoles have
longer game-play episodes, and have moved away from score based game-play.

Agents interact with ALE through a set of 18 actions, for which the actions 0-5 can be
considered basic actions, with the remaining actions being combinations of the basic actions.
The basic action set consists of movement in 4 directions, firing or a NO-OP action. The
state presented to the agent consists of a 210 pixel high by 160 wide screen, with each pixel
a 0-127 (7 bit) color value, with the exception of a small number of games which have a
slightly different screen height. The Atari 2600 console supported a reduced color space
known as SECAM, which was used on early European TV sets. Mapping the 128 colors to
the 8 SECAM colors gives a reduced state space size without much loss of information.

The ALE environment supports the agent acting at a rate of up to 60 steps per second.
This rate is unnecessarily rapid, and results in inhumanly jittery play for most games. We

1. http://stella.sourceforge.net/

2

http://stella.sourceforge.net/


A Comparison of Learning Algorithms on the Arcade Learning Environment

recommend following Bellemare et al. (2013)’s suggestion and acting at 12 steps per second.
This is specified by setting frame skip=5 within the stellarc configuration file.

ALE is straight forward to build and run on Linux and Mac OS X environments. Some
work is required to build on Windows, so we have published a precompiled executable on
the first author’s website. The ALE software supports 61 Atari 2600 games as of version 0.4.
Each game has to be specifically targeted, as the game’s score needs to be extracted from
the game’s RAM, and episode termination conditions must be identified. Of the supported
games, 5 have been singled out by Bellemare et al. (2013) as a training set for setting
hyper-parameters, and 50 others as the test set. Of these games, three have non-standard
screen height (Carnival, Journey Escape and Pooyan).

2. Challenges

The arcade learning environment is substantially more complex than text-book reinforce-
ment learning problems. It exemplifies many of the attributes found in other hard rein-
forcement learning problems. In this section we discuss a number of practical issues which
need to be addressed by agents.

2.1. Exploration

The need for exploration is a well known issue that must be addressed by any reinforcement
learning agent. We found that this problem is particularly exacerbated in the arcade learn-
ing environment. When using model-free methods, the following approaches are typically
used:

Epsilon-greedy policy The epsilon-greedy approach, where with a small probability
(ε ≈ 0.05) a random action is taken. This method has substantial trouble with the rapid
acting rate in the arcade learning environment. Each single random action only slightly
perturbs the state of the system, resulting in very little exploration. For example, in the
game Space Invaders, the player’s ship is restricted to 1 dimension of movement. Even
then, the exploratory actions exhibit slow movement due to random-walk like behavior.
Very rarely does the ship move from one end of the position range to the other.

More complex exploratory action sequences necessary for high-level game-play also do
not occur. For example, in the game Seaquest, the player’s submarine must surface for air
occasionally in order to obtain human-level performance. The sequence of actions required
to surface, then re-submerge, is not performed during exploration with an epsilon-greedy
approach.

In order to achieve the best results in practice with on-policy RL methods, the ε pa-
rameter needs to be reduced over time. However, this is rarely done in published research,
as determining a reduction schedule requires a tedious parameter search, and is extremely
problem dependent.

Figure 2 shows the effect of varying epsilon on Seaquest. Interesting, the standard
exploration amount used in the literature (ε = 0.05) also gives good results here. Degenerate
levels (< 0.02) of course give poor results, but a reasonable policy is still learned for very
random policies (ε > 0.2). We believe this is caused by the short time scales the agent is
acting on. The noise is averaged out over the longer time-scales that game-play occurs at.

3



Defazio Graepel

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Epsilon

50
100
150
200
250
300
350
400
450
500

A
v
g
.

R
ew

a
rd

Figure 2: Effect of varying epsilon on Seaquest with a SARSA agent

Softmax policy Another simple approach to exploration, where Q-values are used to
form a Gibbs distribution over actions at each step. The chosen action is then a sample
from this distribution. This approach avoids the need to choose an exploration reduction
schedule, instead just requiring a scalar temperature parameter to be set. In the arcade
learning environment, we found this approach to be unworkable in practice. The main
issue being an extreme sensitivity to the temperature. In order for it to work at all, the
temperature needs to be fine tuned for each game and each agent.

Figure 3 shows the effect of varying the temperature on Seaquest. Clearly the agent is
only successful for a small range of temperatures, roughly 0.8-2. None of the values we tried
gave results comparable to the ε-greedy policy at the best ε.

Optimistic initialization Perhaps the most effective approach for simplistic grid-world
like-environments is to initialize the agent so that it believes unvisited states are unreason-
ably good. This encourages exploration of all states at least once. In environments with a
small number of states, such as grid-world mazes and the like, this is extremely effective.
For the arcade learning environment, it is not clear how similar results can be achieved.
The position of the agent alone can be captured fairly directly with some state encodings,
but position is not the only property that needs to be explored. The matter is complicated
further when non-linear value function approximation is used, as the value of states will be
pushed down from their original optimistic values during learning, even before they have
been visited.

Imitation learning Another approach to exploration is to guide the agent in someway
using an outside ‘teacher’. This has been explored in depth in robotics, where it is known
as imitation learning (He et al., 2012; Price and Boutilier, 2003) or demonstration learning
(Argall et al., 2009). The simplest variant is where the reinforcement learning agent can
query the teacher, to find out what action the teacher suggests it should take in any state.
A number of practical issues arise in the ALE setting however. A human teacher can not
be used due to the large number of games and rate of play of the agents. It would require

4



A Comparison of Learning Algorithms on the Arcade Learning Environment

100 101

Temperature

0

100

200

300

400

500

600

A
v
g
.

R
ew

a
rd

Figure 3: Effect of varying temperature on Seaquest

impractical amounts of time. Using a computerized agent observed by the learner is the
other possibility. This would require domain specific AI to be programmed for each game.

2.2. Computational Resources

Stella is capable of simulating the Atari 2600 at around 7,200 frames per second on our 3.6
GHz Xeon machine; much faster than real time (60 fps). When running with the additional
overhead of ALE, and communicating via pipes with a separate Python process, we found
that a basic agent could act at roughly 1000 actions per second. When using frame skip=5

as discussed Section 1, which is used in all the experiments detailed in this work, this is
reduced to 200 actions per second. In practice, when including the overhead of the agents
calculations, we were able to run our agents at approximately 130 actions per second.

Given this simulation rate, training for 5000 episodes for a single agent/environment pair
usually took 1-3 days. We believe a carefully coded C++ implementation would be several
times faster than this, but even then, simulations are quite computationally prohibitive.
We would not recommend experimenting with ALE without access to a computing cluster
to run the experiments on.

The 5,000 episode limit used by Bellemare et al. (2013) is large but necessary. While
some methods we experimented with learned reasonable parameters in a few as 500 episodes,
some were still improving at the 5,000 episode limit. This is of course very much larger than
what a human player requires, but without providing prior knowledge about general game
mechanics and spatio-temporal relationships, a reinforcement learning agent will always be
slower to learn.

2.3. State space size

Given the large size of the state space, running non-linear value function learning algorithms
is also quite computationally expensive. The 210x160 screen images are similar in size to
datasets used in current deep learning research (256x256), and the several million frames
encountered during training is also comparable. Even when using reduced state spaces,

5



Defazio Graepel

such as the BASIC representation detailed in Bellemare et al. (2013), simple neural network
models are quite slow, only simulating at 1-3x real-time.

Tile coding is the most practical feature extraction technique. We also experimented
with convolutional features, where a set of predefined filters were run over the image each
step. The large number of convolutions required was too slow, at least using OpenCV2 or
Theano3 convolutional codes.

We performed our experiments using a variant of the BASIC representation, limited
to the SECAM color set. This representation is simply an encoding of the screen with a
courser grid, with a resolution of 14x16. Colors that occur in each 15x10 block are encoded
using indicator features, 1 for each of the 8 SECAM colors. Background subtraction is used
before encoding, as detailed in Bellemare et al. (2013).

3. Learning Algorithms

Here we briefly outline the algorithms that we tested. We are considering the standard
reinforcement learning framework; at each time step t the agent observes a state s(t) and
reward r(t). The action selected at each time step is denoted a(t). The state-action pair is
processed using a state encoder function into a vector φ(s(t), a(t)) = φ(t). This binary vector
contains the BASIC SECAM representation discussed above, of length n, followed by the
(flattened) Cartesian product of the representation and a 1-of-18 action indicator vector.
An additional bias feature which is always active was used.

We will consider algorithms that learn a linear value function associating a real number
with each state-action pair (Qt(s, a) = 〈θ(t), φ(s, a)〉), whose interpretation depends on the
agent. The parameter vector θ and the corresponding function Q change over time, so
they are indexed by the time-step also. The parameter vector has an associated step size
parameter α. Reward discounting was used, denoted γ, with γ = 0.993 used unless noted
otherwise.

All agents we consider will use eligibility traces e(t), so that they are able to learn from
delayed rewards (Singh and Sutton, 1996). This introduces a parameter λ, which we will
discuss further in Section 4.2. We implemented them in the replacing fashion, with the
following update being used:

e
(t)
i =

{
1 if φ

(t)
i = 1

γλe
(t−1)
i if φ

(t)
i = 0

. (1)

SARSA(λ) The first algorithm we tested was SARSA (Rummery and Niranjan, 1994).
This is perhaps the most widely used reinforcement learning algorithm. Although since its
discovery other algorithms have been developed that have better theoretical guarantees, or
better performance on specific problems, SARSA still gives state-of-the-art performance.
SARSA is defined by the update equations:

θ(t+1) = θ(t) + αδ(t)e(t) (2)

where:
δ(t) = r(t+1) + γQt(s

(t+1), a(t+1))−Qt(s
(t), a(t)). (3)

2. http://opencv.org/
3. http://deeplearning.net/software/theano/

6

http://opencv.org/
http://deeplearning.net/software/theano/


A Comparison of Learning Algorithms on the Arcade Learning Environment

Q(λ) We also tested against Q-learning (Watkins, 1989), the off-policy alternative to
SARSA. It differs by the update for δ:

δ(t) = r(t+1) + γmax
a′

Qt(s
(t+1), a′)−Qt(s

(t), a(t)) (4)

Q-learning can potentially learn a better policy than SARSA in games where death can
easily be caused by the random moves included in the ε-greedy policies learned by on-policy
methods. The downside is a stochastic policy can give better results in some games. Off-
policy methods are also known to diverge in some cases when function approximation is
used (Baird et al., 1995).

ETTR(λ) We also implemented a shorted-sighted agent, that aims to minimize the ex-
pected time to next positive reward (ETTR), instead of the discounted expected future
reward optimized by the other agents. This has the advantage of potentially being easier
to learn, as it gets a non-noisy signal whenever it actually reaches a positive reward. The
disadvantage is a lack of long term planning and poorer risk-aversion. Within the temporal
difference framework, with decaying eligibility traces, ETTR uses the following update for
δ:

δ(t) =


−Qt(s

(t), a(t)) + 1

+Qt(s
(t+1), a(t+1)) if r(t+1) = 0

−Qt(s
(t), a(t)) if r(t+1) > 0

. (5)

No discounting is used. We only applied ETTR to games where the reward structure
contained positive rewards as the primary motivator of the agent. This excluded 10 of
the 55 games, mainly games where negative reward was given until a goal was achieved
(Boxing, Double Dunk, Enduro, Fishing Derby, Ice Hockey, Journey Escape, Pong, Private
Eye, Skiing, Tennis). These games could be approached by a similar scheme, where expected
length of episode is minimized instead.

R(λ) Another class of reinforcement learning agents seek to optimize the expected reward
per time step instead. R-learning is the primary example of such a method in the off-policy
case (Schwartz, 1993). Such a formulation avoids the need for discounting, but introduces
an additional step size parameter β, which controls the rate at which an estimate of the
expected reward per time-step ρ changes. The update equations are:

δ(t) = r(t+1) − ρ(t) + max
a′

Qt(s
(t+1), a′)−Qt(s

(t), a(t)), (6)

where ρ is updated whenever we take on policy actions, with:

ρ(t+1) = ρ(t) + β
(
r(t+1) − ρ(t)

+ max
a

Qt(s
(t+1), a)− max

a′
Qt(s

(t), a′)
)
.

(7)

Expected reward methods have seen more use in the Actor-Critic setting (see below).

7



Defazio Graepel

GQ(λ) The gradient temporal difference (GTD, Sutton et al. (2008)) class of algorithms
are an attempt to improve the convergence properties and robustness of classical temporal
difference algorithms. They phrase learning as a stochastic gradient descent problem, for
which stronger convergence properties are known. We applied the GQ(λ) algorithm (Maei
and Sutton, 2010) to the ALE environment. GTD-style algorithms maintain a weight vector
w as well as a parameter vector θ. Both vectors are updated at each step, with step sizes
α and β respectively. The update equations are modified as:

δ(t) = r(t+1) + γEa

[
Qt(s

(t+1), a)
]
−Qt(s

(t), a(t)),

θ(t+1) = θ(t) + α
(
δ(t)e(t) − γ(1− λ)〈w(t), e(t)〉φ̄(t+1)

)
,

w(t+1) = w(t) + β
(
δ(t)e(t) − 〈w(t), φ(t)〉φ(t)

)
.

(8)

The expectation over actions is taken with respect to the epsilon-greedy policy.

Actor-Critic Actor-Critic methods (Barto et al., 1983) decouple the policy and value
function predictors. The critic is used for value function estimation, and the actor maintains
the policy. We will consider the simplest case, where both are linear. The key advantage
of (linear) actor critic methods is that we can use different learning rate parameters for
the actor and the critic. Typically the actor (step length β) is set to evolve slower than
the critic (step length α), so that the value function estimates have more time to stabilize
as the policy changes. We tested a non-standard variant that uses epsilon-greedy policies,
rather than the Gibbs/Boltzmann methods more common in the literature. This choice
was made based on the results in Section 2.1. Let ν denote the critic’s weight vector. Then
δ remains the same as for SARSA, but with the value function approximation changed to
(Qt(s, a) = 〈ν(t), φ(s, a)〉). The parameter updates are:

ν(t+1) = ν(t) + αδ(t)e(t),

θ(t+1) = θ(t) + βδ(t)e(t).
(9)

Action selection by the actor is done as with SARSA, by taking the action that maximizes
〈θ(t), φ(s(t), a)〉.

Other methods Several families of methods could not be tested due to computational
considerations. We briefly discuss some of them here. Least-squares methods such as LSPI
(Lagoudakis and Parr, 2003) are perhaps the most prominent alternative within the class of
linear value function approximation methods. Unfortunately, they require quadratic time
operations in the state vector size. Even though we are using the smallest screen based state
representation considered in the literature for ALE, the quadratic time operations were too
slow for us to use.

There is also a large literature on methods that store past visited state/action infor-
mation, the main example being Fitted Q-iteration (Gordon, 1995). Given the millions of
states visited during training, only a small subset of the history can tractably be stored for
ALE. Investigating tractable variants of history-based methods for ALE is an interesting
avenue of research, but outside the scope of this work.

8



A Comparison of Learning Algorithms on the Arcade Learning Environment

0.50000 0.99330 0.99991
Discounting

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
li

ze
d

A
v
g
.

R
ew

a
rd

seaquest
asterix

beam rider
space invaders

freeway

Figure 4: Effect of varying discounting on training set games

4. Results

The results in this Section were computed by averaging a number of trials. Each trial
consisted of running 5000 episodes while in training mode, then 500 episodes in test mode
where the learned policy is executed. For on-policy methods, the test episodes included the
exploration steps, and for off-policy, the test policy was purely greedy.

4.1. Discounting Comparison

Figure 4 shows the effect of differing discounting amount on the training set games for
SARSA. The optimal discounting factor is not consistent between games, with the best
value differing quite substantially between Seaquest and Asterix for example. A general
trend is apparent; using extremely high discounting (0.5-0.9) is ineffective, and too little
discounting (> 0.9999) also gives poor results. We encountered convergence problems when
no discounting was used, so a value of γ = 1 is omitted from the plot. The roughly convex
dependence on discounting is consistent with the literature on simpler environments.

4.2. Decay Comparison

Figure 5 shows the effect of varying decay on the training set games for SARSA. There is
no clear best decay, although values of both 0 and 1 are poor. Decay in the range 0.5-0.9
seems most effective. There is less sensitivity to the exact value of the decay parameter λ
than the discounting parameter γ.

4.3. Exploration Periods, on/off policy

We experimented with policies that extend the amount of exploration on Seaquest. We
tested a modified ε-greedy approach, where whenever the random policy was chosen, that

9



Defazio Graepel

0.0 0.2 0.4 0.6 0.8 1.0
Decay

−0.5

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
li

ze
d

A
v
g
.

R
ew

a
rd

seaquest
asterix

beam rider
space invaders

freeway

Figure 5: Effect of varying decay on training set games

action was then taken for more than a single step. We varied this exploration length
between 1 and 6 steps. We got somewhat mixed results. Figure 6 shows that for SARSA
and Q-learning, depending on the value of ε, length two exploration periods can be better
than standard ε-greedy, but the difference is close to the noise floor. Otherwise there is a
downward trend in the average reward obtained, with a small up-tick around length six.

4.4. Algorithm Comparison

For each algorithm described in Section 3, we ran 5 trials on each of the games where it
could be applied. Two issues arose that needed to be addressed. Several game & algorithm
combinations exhibited behaviour where the agent would make no progress and consistently
hit the episode limit with zero reward. This happened in particular on Zaxxon and Mon-
tezuma’s revenge. These cases were excluded from the comparisons. We also encountered
divergent behaviour on Q-learning roughly 40% of the time, and on GQ a surprising 70%
of the time. Runs where divergence occured were excluded.

We consider SARSA as the baseline. First we compare the performance and consistency
of the methods. For each algorithm we computed the average reward during the test episodes
for each trail and game. We then computed the relative performance of the method as the
average over each game of the ratio of the trial average against the baseline. The average
was computed over the middle 90% of games to remove outliers. We also computed the
test reward standard deviation (SD) across trails for each game as a measure of consistency.
The median (Q2) and 1st and 3rd quartiles of the SD across games is given together with
the relative performance in Table 1.

We can see that SARSA, R, AC and ETTR all performed similarly in the relative
performance metric. This suggests that the additional complexity of AC and the narrower
focus of ETTR did not help. Our hypothesis that ETTR would perform more consistently

10



A Comparison of Learning Algorithms on the Arcade Learning Environment

0 1 2 3 4 5 6 7

Length of random policy

200

300

400

500

600

A
v
g
.

R
ew

a
rd

0.010 0.025 0.050

0 1 2 3 4 5 6 7

Length of random policy

100

200

300

400

500

600

700

A
v
g
.

R
ew

a
rd

0.010 0.025 0.050

Figure 6: Longer exploration periods with SARSA on Seaquest for three ε values, for
SARSA (top) and Q-Learning (bottom)

Algorithm Rel. perf SD Q1 SD Q2 SD Q3
SARSA 1.00 0.26 0.41 0.55
AC 0.99 0.23 0.45 0.58
ETTR 1.03 0.32 0.44 0.58
GQ 0.65 0.14 0.42 0.81
Q 0.82 0.27 0.50 0.85
R 0.96 0.26 0.42 0.59

Table 1: Algorithm performance and consistency comparison

is also not supported by the standard deviation results. The off-policy methods Q-learning
and GQ-learning did not perform well here, showing significantly worse results.

The large variances we see can potentially effect the relative performance figures signif-
icantly. A more robust method of comparing a pair of algorithms is to count the number
of games for which the average test reward is higher for one game than the other. Table 2
contains these comparisons. Cases where one or both games failed to converge or timed-out
are excluded from the table.

11



Defazio Graepel

SARSA AC ETTR GQ Q R
SARSA - 28/25 22/21 49/5 44/10 30/23
AC 25/28 - 18/25 49/4 38/17 26/25
ETTR 21/22 25/18 - 40/1 36/8 22/20
GQ 5/49 4/49 1/40 - 8/37 5/49
Q 10/44 17/38 8/36 37/8 - 13/41
R 23/30 25/26 20/22 49/5 41/13 -

Table 2: Pairwise higher/lower test reward comparison

The results in this table support the inferences made using the relative performance
measure. SARSA appears better than R-learning by a larger margin, possibly due to
chance, but otherwise the on-policy methods show similar results.

We also computed the correlation coefficient between each pair of algorithms, considering
only trials for which both methods finished. The results are shown in Table 3.

SARSA AC ETTR GQ Q R
SARSA 1.00 0.27 -0.12 -0.86 -0.46 0.38
AC 0.27 1.00 -0.27 -0.75 -0.10 -0.06
ETTR -0.12 -0.27 1.00 -0.69 -0.76 -0.21
GQ -0.86 -0.75 -0.69 1.00 0.71 -0.79
Q -0.46 -0.10 -0.76 0.71 1.00 -0.07
R 0.38 -0.06 -0.21 -0.79 -0.07 1.00

Table 3: Algorithm correlation

As would be expected, there is little correlation between SARSA and ETTR, suggesting
they perform well on differing problems. There is moderate correlation between SARSA
and AC, which would be expected given there similarities. Q and GQ learning are highly
correlated, whereas they are both negatively correlated with R-learning. This suggests
the behaviour of R-learning is closer to the on-policy methods, given it’s correlation with
SARSA.

One of the most relevant properties of a learning algorithm is its speed of convergence.
For each method, we computed the average reward over the last 500 episodes of the training
episodes, and compared it to the average across the 500 episodes preceding those. If the
average was within 10%, we considered the method to have converged. The percentage of
converged trails out of those that finished for each method was: SARSA: 85%; AC: 80%;
ETTR: 84%; GQ: 80%; Q: 82%; R: 85%. The convergence rates are very similar across the
methods considered. These results also suggests that the step size constants that we chose
were reasonable.

5. Discussion

5.1. Instability

We were surprised by the variability in the results we saw. The same agent with the same
hyper-parameters can exhibit learning curves that show little resemblance to one another.

12



A Comparison of Learning Algorithms on the Arcade Learning Environment

On games with fairly stable behaviour, there is often a ±50% swing in results between trials.
On less stable games such as Zaxxon, the agents could get stuck on degenerate low reward
policies. This makes comparisons between agents difficult. It is unsatisfying to average over
such effects, as it hides the true nature of what is being learned.

5.2. Divergence

Off-policy methods such as Q-learning are known to have convergence issues when function
approximation is used, even in the linear case that we considered. This is normally consid-
ered a theoretical issue when ε-greedy policies are used, as the difference between ε-greedy
and pure on-policy is minor. However we did see a high probability of divergence in practice
with Q-learning, as detailed in the results section. Surprisingly, we also experienced diver-
gence with GQ(λ), despite theoretical convergence results. Our implementation did not use
the projection step that they detail. Their theory requires the projection, however they
suggest it is not needed in practice. We believe that it is the likely cause of the convergence
issues, combined with perhaps a sensitivity to the step parameters.

Interestingly, The off-policy R-learning method did not have the same divergence issues,
and it performed nearly as well as SARSA in our experiments. It appears the best choice
among the off-policy methods considered.

5.3. Exploration

Even within the class of linear value function approximation, we clearly see in our experi-
ments that sub-optimal policies are being learned in many trials. Plotting the reward per
episode over time shows that the average reward per episode stops improving, but at a level
below the optimal reward level, and at a level varying between trials. We speculate that the
epsilon-greedy policy is not resulting in much exploration, rather its effect is to introduce
jitter that helps prevents degenerate policies from being followed, such as repeated inef-
fective actions, or behavioural loops. Based on the need for large learning rates, it seems
that the noise introduced into the value function by taking large steps in parameter space
is contributing far more to exploration.

5.4. Learned policies

Looking at raw point scores does not give a clear indication of what a policy is actually
doing. To get a better idea of the sorts of policies that were being learned we examined
videos of the each agent’s gameplay on a number of games. For the majority of games we
examined, the learned policies consisted of a very simple sequence of movements together
with holding down the fire key. For example, with Seaquest, holding fire together with
alternating left-down and right-down actions appeared to be the policy learned by SARSA
most of the time. Similar behaviour was learned on Krull, where repeatedly jumping gives
a very high score.

We noticed that the linear algorithms we considered were capable of learning to move
to a particular location on the screen at the start of the episode, then from there repeating
a set of actions. For example, in Gopher, the AC agent learned to move to a fixed point
right of the starting location, then to repeatedly trigger the fire action. This appeared to be

13



Defazio Graepel

effective due to a simplistic enemy AI. For Zaxxon, you die after 10 seconds with a score of
zero unless you move to the center of the screen, away from the starting position on the left.
This turned out to be an extremely difficult policy to learn, as the negative reinforcement
(death) occurs long after the actions. All the algorithms we looked at had some runs where
they completely failed to learn that policy, or discovered it then later abandoned it part
way through training.

5.5. Choosing the best algorithm for an environment

The comparison on diverse environments we have performed allows us to see which envi-
ronments each algorithm is best at and which it is worse at. First we consider the off-policy
algorithms. They tended to perform best on problems where exploration actions could have
major negative effect on the outcome, which is consistent with our expectations. For ex-
ample, for Zaxxon mentioned above, they were more consistently able to stay in the safe
region of the screen. Looking in particular at Q-learning, we see a large improvement in
performance when switching from the training regime to the test regime (where no epsilon
randomness is used) for Seaquest, Assault, Time pilot, Asterix, and smaller improvements
for many other games. For some games, a sharp drop in performance occurs, such as for
Tutankham and Space Invaders.

Games that require a level of random left and right movement were particularly a prob-
lem, such as the Crazy Climber game, where the player just has to move forward most of the
time, but occasional left or right movement is required to go around obstacles. Potentially
a soft-max policy could avoid these issues, but as mentioned in Section 2.1, the temperature
parameter needs to be fine-tuned separately for each game due to the large differences in
score magnitudes.

The ETTR method was able to outperform the other algorithms for a number of games,
including Gopher, Q*bert and Road Runner. These games had a common pattern where
you need to react to movement in squares adjacent to the player character. This pattern
was shared by a number of other games also, so its not clear if any conclusions can be drawn
from that. The ETTR agent had significantly less risk aversion than the other algorithms
considered, which was the expected behaviour. For example on Seaquest, instead of moving
the player’s submarine to the bottom of the screen which is the safest location, it stayed
near the top of the screen where more rewards are available. In terms of actual scores, we
didn’t see significant negative effects from the lack of risk aversion in the games we looked
at.

The AC agent was able to outperform all the other methods on a number of problems
also. It had significantly better scores on Boxing, Alien and Frostbite. The AC method
can also be tuned to a greater degree than SARSA, so it is a good choice when tuning on
a per-problem basis is used. Additional tuning can also be a downside, although based on
it’s consistent performance that doesn’t appear to be the case here.

6. Related Work on the Arcade Learning Environment

The arcade learning environment is relatively new, so little work so far directly targets it.
(Bellemare et al., 2013) introduces the environment. They consider the performance of
several state representations with SARSA.

14



A Comparison of Learning Algorithms on the Arcade Learning Environment

Naddaf (2010) presents some tables comparing decay and learning rates for 4 of the
training set games. Our plots in Section 4 are more comprehensive. Mnih et al. (2013)
consider the use of deep learning methods on a subset of 7 games, showing super-human
performance on 3 games.

Conclusion

The results in this paper provide a guide other researchers working with the Arcade Learn-
ing Environment. We give guidance on most effective decay, discounting and epsilon-greedy
constants. We also provide a comparison of standard RL algorithms, showing that a set of
commonly used linear on-policy algorithms give similar performance. We also show that
some common off-policy methods have serious issues with the complexity of the ALE envi-
ronment, and we give recommendations based on our empirical results on the RL algorithms
that should used in different game environments.

References

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009.

Leemon Baird et al. Residual algorithms: Reinforcement learning with function approxi-
mation. In ICML, pages 30–37, 1995.

A.G. Barto, R.S. Sutton, and C.W. Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. Systems, Man and Cybernetics, IEEE Transactions
on, SMC-13(5):834–846, 1983. ISSN 0018-9472.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research,
2013.

Geoffrey J Gordon. Stable function approximation in dynamic programming. Technical
report, DTIC Document, 1995.

He He, Hal Daume III, and Jason Eisner. Imitation learning by coaching. In Advances in
Neural Information Processing Systems 25, pages 3158–3166, 2012.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. The Journal of
Machine Learning Research, 4:1107–1149, 2003.

Hamid Reza Maei and Richard S Sutton. Gq (λ): A general gradient algorithm for temporal-
difference prediction learning with eligibility traces. In Proceedings of the Third Confer-
ence on Artificial General Intelligence, 2010.

Andrew Kachites McCallum. Reinforcement learning with selective perception and hidden
state. PhD thesis, University of Rochester, 1996.

15



Defazio Graepel

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
Technical report, DeepMind Technologies, 2013.

Yavar Naddaf. Game-Independent AI Agents for Playing Atari 2600 Console Games. Mas-
ters, University of Alberta, 2010.

Bob Price and Craig Boutilier. Accelerating reinforcement learning through implicit imita-
tion. J. Artif. Intell. Res.(JAIR), 19:569–629, 2003.

Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems.
University of Cambridge, Department of Engineering, 1994.

Anton Schwartz. A reinforcement learning method for maximizing undiscounted rewards.
In ICML, volume 93, pages 298–305, 1993.

Satinder P Singh and Richard S Sutton. Reinforcement learning with replacing eligibility
traces. Machine learning, 22(1-3):123–158, 1996.

Richard S Sutton, Cs. Szepesvari, and H. R. Maei. A convergent o(n) algorithm for off-
policy temporal-difference learning with linear function approximation. In Advances in
Neural Information Processing Systems, 2008.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis,
University of Cambridge, 1989.

16


	Environment Overview
	Challenges
	Exploration
	Computational Resources
	State space size

	Learning Algorithms
	Results
	Discounting Comparison
	Decay Comparison
	Exploration Periods, on/off policy
	Algorithm Comparison

	Discussion
	Instability
	Divergence
	Exploration
	Learned policies
	Choosing the best algorithm for an environment

	Related Work on the Arcade Learning Environment

