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Abstract
We propose a system for calculating a ‘‘scaling constant’’ for layers and weights of neural networks. We relate this scaling

constant to two important quantities that relate to the optimizability of neural networks, and argue that a network that is

‘‘preconditioned’’ via scaling, in the sense that all weights have the same scaling constant, will be easier to train. This

scaling calculus results in a number of consequences, among them the fact that the geometric mean of the fan-in and fan-

out, rather than the fan-in, fan-out, or arithmetic mean, should be used for the initialization of the variance of weights in a

neural network. Our system allows for the off-line design & engineering of ReLU (Rectified Linear Unit) neural networks,

potentially replacing blind experimentation. We verify the effectiveness of our approach on a set of benchmark problems.

Keywords ReLU � Neural network initialization � Preconditioning � Artificial neural networks

1 Introduction

The design of neural networks is often considered a black-

art, driven by trial and error rather than foundational

principles. This is exemplified by the success of recent

architecture random-search techniques [22, 37], which take

the extreme of applying no human guidance at all.

Although as a field we are far from fully understanding the

nature of learning and generalization in neural networks,

this does not mean that we should proceed blindly.

In this work, we define a scaling quantity cl for each

layer l that approximates two quantities of interest when

considering the optimization of a neural network: The ratio

of the gradient to the weights, and the average squared

singular value of the corresponding diagonal block of the

Hessian for layer l. This quantity is easy to compute from

the (non-central) second moments of the forward-propa-

gated values and the (non-central) second moments of the

backward-propagated gradients. We argue that networks

that have constant cl are better conditioned than those that

do not, and we analyze how common layer types affect this

quantity. We call networks that obey this rule precondi-

tioned neural networks.

As an example of some of the possible applications of

our theory, we:

• Propose a principled weight initialization scheme that

can often provide an improvement over existing

schemes;

• Show which common layer types automatically result in

well-conditioned networks;

• Show how to improve the conditioning of common

structures such as bottlenecked residual blocks by the

addition of fixed scaling constants to the network.

2 Notation

Consider a neural network mapping x0 to xL made up of L

layers. These layers may be individual operations or blocks of

operations. During training, a loss function is computed for

each minibatch of data, and the gradient of the loss is back-

propagated to each layer l and weight of the network. We prefix

each quantity withD to represent the back-propagated gradient

of that quantity. We assume a batch-size of 1 in our calcula-

tions, although all conclusions hold using mini-batches as well.

Each layer’s input activations are represented by a ten-

sor xl : nl � ql � ql made up of nl channels, and spatial
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dimensions ql � ql, assumed to be square for simplicity

(results can be adapted to the rectangular case by using hlwl

in place of ql everywhere).

3 A model of ReLU network dynamics

Our scaling calculus requires the use of simple approxi-

mations of the dynamics of neural networks, in the same

way that simplifications are used in physics to make

approximate calculations, such as the assumption of zero-

friction or ideal gasses. These assumptions constitute a

model of the behavior of neural networks that allows for

easy calculation of quantities of interest, while still being

representative enough of the real dynamics.

To this end, we will focus in this work on the behavior

of networks at initialization. Furthermore, we will make

strong assumptions on the statistics of forward and back-

ward quantities in the network. These assumptions include:

1. The input to layer l, denoted xl, is a random tensor

assumed to contain i.i.d entries. We represent the

element-wise uncentered 2nd moment by E½x2
l �.

2. The back-propagated gradient of xl is Dxl and is

assumed to be uncorrelated with xl and iid. We

represent the uncentered 2nd-moment of Dxl by E½Dx2
l �.

3. All weights in the network are initialized i.i.d from a

centered, symmetric distribution.

4. All bias terms are initialized as zero.

Our calculations rely heavily on the uncentered second

moments rather than the variance of weights and gradients.

This is a consequence of the behavior of the ReLU acti-

vation, which zeros out entries. The effect of this zeroing

operation is simple when considering uncentered second

moments under a symmetric input distribution, as half of

the entries will be zeroed, resulting in a halving of the

uncentered second moment. In contrast, expressing the

same operation in terms of variance is complicated by the

fact that the mean after application of the ReLU is distri-

bution-dependent. We will refer to the uncentered second

moment just as the ‘‘second moment’’ henceforth.

4 Activation and layer scaling factors

The key quantity in our calculus is the activation scaling

factor 1l, of the input activations for a layer l, which we

define as:

1l ¼ nlq
2
l E½Dx2

l �E½x2
l �: ð1Þ

This quantity arises due to its utility in computing other

quantities of interest in the network, such as the scaling

factors for the weights of convolutional and linear layers.

In ReLU networks, many, but not all operations maintain

this quantity in the sense that 1l ¼ 1lþ1 for a layer xlþ1 ¼
FðxlÞ with operation F, under the assumptions of Sect. 3.

Table 1 contains a list of common operations and indicates

if they maintain scaling. As an example, consider adding a

simple scaling layer of the form xlþ1 ¼
ffiffiffi

2
p

xl which dou-

bles the second moment during the forward pass and

doubles the backward second moment during back-propa-

gation. We can see that:

1lþ1 ¼ nlþ1q
2
lþ1E½Dx2

lþ1�E½x2
lþ1�

¼ nlq
2
l

1

2
E½Dx2

l � � 2E½x2
l � ¼ 1l

Our analysis in our work is focused on ReLU networks

primarily due to the fact that ReLU nonlinearities maintain

this scaling factor.

Using the activation scaling factor, we define the layer

or weight scaling factor of a convolutional layer with

kernel kl � kl as:

cl ¼
1l

nlþ1nlk
2
l E½W2

l �
2
: ð2Þ

Recall that nl is the fan-in and nlþ1 is the fan-out of the

layer. This expression also applies to linear layers by tak-

ing kl ¼ 1. This quantity can also be defined extrinsically

without reference to the weight initialization via the

expression:

cl ¼ nlk
2
l q

2
l E x2

l

� �2E½Dx2
lþ1�

E½x2
lþ1�

:

we establish this equivalence under the assumptions of

Sect. 3 in the Appendix.

5 Motivations for scaling factors

We can motivate the utility of our scaling factor definition

by comparing it to another simple quantity of interest. For

each layer, consider the ratio of the second moments

between the weights, and their gradients:

ml¼:
E½DW2

l �
E½W2

l �
:

This ratio approximately captures the relative change that a

single SGD step with unit step-size on Wl will produce. We

call this quantity the weight-to-gradient ratio. When

E½DW2
l � is very small compared to E½W2

l �, the weights will

stay close to their initial values for longer than when

E½DW2
l � is large. In contrast, if E½DW2

l � is very large

compared to E½W2
l �, then learning can be expected to be

unstable, as the sign of the elements of W may change
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rapidly between optimization steps. A network with con-

stant ml is also well-behaved under weight-decay, as the

ratio of weight-decay second moments to gradient second

moments will stay constant throughout the network,

keeping the push-pull of gradients and decay constant

across the network. This ratio also captures a relative

notion of exploding or vanishing gradients. Rather than

consider if the gradient is small or large in absolute value,

we consider its relative magnitude instead.

Theorem 1 The weight to gradient ratio ml is equal to the

scaling factor cl under the assumptions of Sect. 3

5.1 Conditioning of the Hessian

The scaling factor of a layer l is also closely related to the

singular values of the diagonal block of the Hessian cor-

responding to that layer. We derive a correspondence in

this section, providing further justification for our defini-

tion of the scaling factor above. We focus on non-convo-

lutional layers for simplicity in this section, although the

result extends to the convolutional case without issue.

ReLU networks have a particularly simple structure for

the Hessian for any set of activations, as the network’s

output is a piecewise-linear function g fed into a final layer

consisting of a loss. This structure results in greatly sim-

plified expressions for diagonal blocks of the Hessian with

respect to the weights, and allows us to derive expressions

involving the singular values of these blocks.

We will consider the output of the network as a com-

position of two functions, the current layer g, and the

remainder of the network h. We write this as a function of

the weights, i.e. f ðWlÞ ¼ hðgðWlÞÞ. The dependence on the

input to the network is implicit in this notation, and the

network below layer l does not need to be considered.

Let Rl ¼ r2
xlþ1

hðxlþ1Þ be the Hessian of h, the remainder

of the network after application of layer l (For a linear layer

xlþ1 ¼ Wlxl). Let Jl be the Jacobian of yl with respect to Wl.

The Jacobian has shape Jl : n
out
l � nout

l nin
l

� �

. Given these

quantities, the diagonal block of the Hessian corresponding

to Wl is equal to:

Gl ¼ JTl RlJl:

The lth diagonal block of the Generalized Gauss-Newton

matrix G [23]. We discuss this decomposition further in the

appendix.

Assume that the input-output Jacobian U of the

remainder of the network above each block is initialized so

that Uk k2
2¼ Oð1Þ with respect to nlþ1. This assumption just

encodes the requirement that initialization used for the

remainder of the network is sensible, so that the output of

the network does not blow-up for large widths.

Theorem 2 Under the assumptions outlined in Sect. 3, for

linear layer l, the average squared singular value of Gl is

equal to:

nlE x2
l

� �2E½Dx2
lþ1�

E½x2
lþ1�

þ O
nlE x2

l

� �2

nlþ1E½x2
lþ1�

 !

:

The Big-O term is with respect to nl and nlþ1; its precise

value depends on properties of the remainder of the

network above the current layer.

Despite the approximations required for its derivation,

the scaling factor can still be close to the actual average

squared singular value. We computed the ratio of the

scaling factor (Eq. 2) to the actual expectation E½ Glrð Þ2�
for a strided (rather than max-pooled, see Table 1) LeNet

Table 1 Scaling of common layers

Method Maintains

scaling

Notes

Linear layer U Layer scaling requires geometric initialization

(Strided)

convolution

U Requires stride equal to the kernel size

Skip connections U Operations within residual blocks will also be scaled correctly against other residual blocks, but not against

outside operations.

Average pooling U Requires stride equal to the kernel size

Max pooling 7

Dropout U

ReLU/

LeakyReLU

U Any positively-homogenous function with degree 1

Sigmoid 7

Tanhh 7 Maintains scaling if entirely within the linear regime
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model, where we use random input data and a random loss

(i.e. for outputs y we use yTRy for an i.i.d normal matrix R),

with batch-size 1024, and 32 � 32 input images. The

results are shown in Fig. 1 for 100 sampled setups; there is

generally good agreement with the theoretical expectation.

6 Initialization of ReLU networks

An immediate consequence of our definition of the scaling

factor is a rule for the initialization of ReLU networks.

Consider a network where the activation scaling factor is

constant through-out. Then any two layers l and r will have

the same weight scaling factor if cl ¼ cr, which holds

immediately when each layer is initialized with:

E½W2
l � ¼

c

kl
ffiffiffiffiffiffiffiffiffiffiffiffi

nlnlþ1
p ; ð3Þ

for some fixed constant c independent of the layer. Ini-

tialization using the geometric-mean of the fan-in and fan-

out ensures a constant layer scaling factor throughout the

network, aiding optimization. Notice that the dependence

on the kernel size is also unusual, rather than k2
l , we nor-

malize by kl.

6.1 Other initialization schemes

The most common approaches are the Kaiming [11]

(sometimes called He) and Xavier [6] (sometimes called

Glorot) initializations. The Kaiming technique for ReLU

networks is one of two approaches:

ðfan-in) Var½Wl� ¼
2

nlk
2
l

or

ðfan-out) Var½Wl� ¼
2

nlþ1k
2
l

ð4Þ

For the feed-forward network above, assuming random

activations, the forward-activation variance will remain

constant in expectation throughout the network if fan-in

initialization of weights [21] is used, whereas the fan-out

variant maintains a constant variance of the back-

propagated signal. The constant factor 2 corrects for the

variance-reducing effect of the ReLU activation. Although

popularized by [11], similar scaling was in use in early

neural network models that used tanh activation functions

[1].

These two principles are clearly in conflict; unless

nl ¼ nlþ1, either the forward variance or backward variance

will become non-constant. No prima facie reason for pre-

ferring one initialization over the other is provided.

Unfortunately, there is some confusion in the literature as

many works reference using Kaiming initialization without

specifying if the fan-in or fan-out variant is used.

The Xavier initialization [6] is the closest to our pro-

posed approach. They balance these conflicting objectives

using the arithmetic mean:

Var½Wl� ¼
2

1
2
nl þ nlþ1ð Þk2

l

; ð5Þ

to ‘‘... approximately satisfy our objectives of maintaining

activation variances and back-propagated gradients vari-

ance as one moves up or down the network’’. This

approach to balancing is essentially heuristic, in contrast to

the geometric mean approach that our theory directly

guides us to.

Figure 2 shows heat maps of the average singular values

for each block of the Hessian of a LeNet model under the

initializations considered. The use of geometric initializa-

tion results in an equally weighted diagonal, in contrast to

the other initializations considered.

6.2 Practical application

The dependence of the geometric initialization on kernel

size rather than its square will result in a large increase in

forward second moments if c is not carefully chosen. We

recommend setting c ¼ 2=k, where k is the typical kernel

size in the network. Any other layer in the network with

kernel size differing from this default should be preceded

by a fixed scaling factor xlþ1 ¼ axl, that corrects for this.

For instance, if the typical kernel size is 1, then a 3x3

Fig. 1 Distributions of the ratio of theoretical scaling to actual for a strided LeNet network. The ratios are close to the ideal value of 1, indicating

good theoretical and practical agreement
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convolution would be preceded with a a ¼
ffiffiffiffiffiffiffiffi

1=3
p

fixed

scaling factor.

In general, we have the freedom to modify the initial-

ization of a layer, then apply a fixed multiplier before or

after the layer to ‘‘undo’’ the increase. This allows us to

change the behavior of a layer during learning by modi-

fying the network rather than modifying the optimizer.

Potentially, we can avoid the need for sophisticated adap-

tive optimizers by designing networks to be easily opti-

mizable in the first place. In a sense, the need for

maintaining the forward or backward variance that moti-

vates that fan-in/fan-out initialization can be decoupled

from the choice of initialization, allowing us to choose the

initialization to improve the optimizability of the network.

Initialization by the principle of dynamical isometry

[30, 35], a form of orthogonal initialization [24] has been

shown to allow for the training of very deep networks.

Such orthogonal initializations can be combined with the

scaling in our theory without issue, by ensuring the input-

output second moment scaling is equal to the scaling

required by our theory. Our analysis is concerned with the

correct initialization when layer widths change within a

network, with is a separate concern from the behavior of a

network in a large-depth limit, where all layers are typi-

cally taken to be the same width. In ReLU networks

orthogonal initialization is less interesting, as ‘‘... the ReLU

nonlinearity destroys the qualitative scaling advantage that

linear networks possess for orthogonal weights versus

Gaussian’’ [27].

7 Output second moments

A neural network’s behavior is also very sensitive to the

second moment of the outputs. We are not aware of any

existing theory guiding the choice of output variance at

initialization for the case of log-softmax losses, where it

has a non-trivial effect on the back-propagated signals,

although output variances of 0.01 to 0.1 are reasonable

choices to avoid saturating the nonlinearity while not being

too close to zero. The output variance should always be

checked and potentially corrected when switching initial-

ization schemes, to avoid inadvertently large or small

values.

In general, the variance at the last layer may easily be

modified by inserting a fixed scalar multiplier xlþ1 ¼ axl
anywhere in the network, and so we have complete control

over this variance independently of the initialization used.

For a simple ReLU convolutional network with all kernel

sizes the same, and without pooling layers we can compute

the output second moment when using geometric-mean

initialization (c ¼ 2=k) with the expression:

E½x2
lþ1� ¼

1

2
k2
l nlE½W2

l �E½x2
l � ¼

ffiffiffiffiffiffiffiffi

nl
nlþ1

r

E½x2
l �: ð6Þ

The application of a sequence of these layers gives a

telescoping product:

E½x2
L� ¼

Y

L�1

l¼0

ffiffiffiffiffiffiffiffi

nl
nlþ1

r

 !

E½x2
0� ¼

ffiffiffiffiffi

n0

nL

r

E½x2
0�:

so the output variance is independent of the interior

structure of the network and depends only on the input and

output channel sizes.

8 Biases

The conditioning of the additive biases in a network is also

crucial for learning. Since our model requires that biases be

initialized to zero, we can not use the gradient to weight

ratio for capturing the conditioning of the biases in the

network. The average singular value notion of conditioning

still applies, which leads to the following definition: The

scaling of the bias of a layer l, xlþ1 ¼ ClðxlÞ þ bl is defined

as:

(a) (b) (c) (d)

Fig. 2 Average singular value heat maps for the strided LeNet model,

where each square represents a block of the Hessian, with blocking at

the level of weight matrices (biases omitted). Using geometric

initialization maintains an approximately constant block-diagonal

weight. The scale goes from Yellow (larger) through green to blue

(smaller)
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cbl ¼ q2 E½Dx2
l �

E½x2
l �

: ð7Þ

In terms of the activation scaling this is:

cbl ¼ q2 E½Dx2
l �

E½x2
l �

¼ 1l
nE½Dx2

l �E½x2
l �
E½Dx2

l �
E½x2

l �

¼ 1l
nlE½x2

l �
2
:

ð8Þ

From Eq. 6 it’s clear that when geometric initialization is

used with c ¼ 2=k, then:

nlþ1E½x2
lþ1�

2 ¼ nlE½x2
l �

2;

and so all bias terms will be equally scaled against each

other. If kernel sizes vary in the ReLU network, then a

setting of c following Sect. 6.2 should be used, combined

with fixed scalar multipliers that ensure that at initialization

E½x2
lþ1� ¼

ffiffiffiffiffiffi

nl
nlþ1

q

E½x2
l �.

8.1 Network input scaling balances weights
against biases

It is traditional to normalize a dataset before applying a

neural network so that the input vector has mean 0 and

variance 1 in expectation. This scaling originated when

neural networks commonly used sigmoid and tanh non-

linearities, which depended heavily on the input scaling.

This principle is no longer questioned today, even though

there is no longer a good justification for its use in modern

ReLU based networks. In contrast, our theory provides

direct guidance for the choice of input scaling.

Consider the scaling factors for the bias and weight

parameters in the first layer of a ReLU-based network, as

considered in previous sections. We assume the data is

already centered. Then the scaling factors for the weight

and bias layers are:

c0 ¼ n0k
2
0q

2
1E x2

0

� �2E½Dy2
0�

E½y2
0�

; c0b ¼ q2
1

E½Dy2
0�

E½y2
0�

:

We can cancel terms to find the value of E x2
0

� �

that makes

these two quantities equal:

E x2
0

� �

¼ 1
ffiffiffiffiffiffiffiffiffi

n0k
2
0

p :

In common computer vision architectures, the input planes

are the 3 color channels and the kernel size is k ¼ 3, giving

E x2
0

� �

� 0:2. Using the traditional variance-one normal-

ization will result in the effective learning rate for the bias

terms being lower than that of the weight terms. This will

result in potentially slower learning of the bias terms than

for the input scaling we propose. We recommend including

an initial forward scaling factor in the network of

1=ðn0k
2Þ1=4

to correct for this (Table 2).

9 Experimental results on 26 LIBSVM
datasets

We considered a selection of dense and moderate-sparsity

multi-class classification datasets from the LibSVM

repository, 26 in total, collated from a variety of sources

[3–5, 13, 14, 16, 18–20, 25, 28, 34]. The same model was

used for all datasets, a non-convolutional ReLU network

with 3 weight layers total. The inner-two layer widths were

fixed at 384 and 64 nodes, respectively. These numbers

were chosen to result in a larger gap between the opti-

mization methods, less difference could be expected if a

more typical 2� gap was used. Our results are otherwise

generally robust to the choice of layer widths.

For every dataset, learning rate, and initialization com-

bination we ran 10 seeds and picked the median loss after 5

epochs as the focus of our study (The largest differences

can be expected early in training). Learning rates in the

range 21 to 2�12 (in powers of 2) were checked for each

dataset and initialization combination, with the best

learning rate chosen in each case based on the median of

the 10 seeds. Training loss was used as the basis of our

comparison as we care primarily about convergence rate,

and are comparing identical network architectures. Some

additional details concerning the experimental setup and

which datasets were used are available in the appendix.

Table 2 shows that geometric initialization is the most

consistent of the initialization approaches considered. The

best value in each column is in bold. It has the lowest

loss, after normalizing each dataset, and it is never the

Table 2 Comparison on 26

LIBSVM repository datasets
Method Average normalized loss ð�0:01Þ Worst in # Best in #

Arithmetic mean 0.90 14 3

Fan-in 0.84 3 5

Fan-out 0.88 9 12

Geometric mean 0.81 0 6
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Fig. 3 Training loss comparison across 26 datasets from the LibSVM repository
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worst of the 4 methods on any dataset. Interestingly, the

fan-out method is most often the best method, but con-

sideration of the per-dataset plots (Fig. 3) shows that it

often completely fails to learn for some problems, which

pulls up its average loss and results in it being the worst for

9 of the datasets.

10 Convolutional case: AlexNet experiments

To provide a clear idea of the effect of our scaling

approach on larger networks we used the AlexNet archi-

tecture [17] as a test bench. This architecture has a large

variety of filter sizes (11, 5, 3, linear), which according to

our theory will affect the conditioning adversely, and

which should highlight the differences between the meth-

ods. The network was modified to replace max-pooling

with striding as max-pooling is not well-scaled by our

theory.

Following Sect. 7, we normalize the output of the net-

work at initialization by running a single batch through the

network and adding a fixed scaling factor to the network to

produce output standard deviation 0.05. We tested on

CIFAR-10 following the standard practice as closely as

possible, as detailed in the Appendix. We performed a

geometric learning rate sweep over a power-of-two grid.

Results are shown in Fig. 4 for an average of 40 seeds for

each initialization. Preconditioning is a statistically sig-

nificant improvement (p ¼ 3:9 � 10�6Þ over arithmetic

mean initialization and fan-in initialization, however, it

only shows an advantage over fan-out at mid-iterations.

11 Case study: unnormalized residual
networks

In the case of more complex network architectures, some

care needs to be taken to produce well-scaled neural net-

works. We consider in this section the example of a

residual network, a common architecture in modern

machine learning. Consider a simplified residual architec-

ture like the following, where we have omitted ReLU

operations for our initial discussion:

x1 ¼ C0ðx0Þ;
x2 ¼ B0ðx1; a0; b0Þ;
x3 ¼ B1ðx2; a1; b1Þ;
x4 ¼ AvgPoolðx3Þ;
x5 ¼ Lðx4Þ:

where for some sequence of operations F:

Bðx; a; bÞ ¼ axþ bFðxÞ;

we further assume that a2 þ b2 ¼ 1 and that E½FðxÞ2� ¼
E½x2� following [31]. The use of weighted residual blocks is

necessary for networks that do not use batch normalization

[7, 10, 32, 36].

If geometric initialization is used, then C0 and L will

have the same scaling, however, the operations within the

residual blocks will not. To see this, we can calculate the

activation scaling factor within the residual block. We

define the shortcut branch for the residual block as the ax
operation and the main branch as the C(x) operation. Let

xR ¼ bCðxÞ and xS ¼ ax, and define y ¼ xS þ xR.

Let 1 be the scaling factor at x

1 ¼ nq2E½Dx2�E½x2�;

We will use the fact that:

E½Dx2� ¼ a2 þ b2
� �

E½Dy2�
¼ E½Dy2�:

From rewriting the scale factor for xR, we see that:

1R ¼ nq2E½Dx2
R�E½x2

R�
¼ nq2E½Dx2�E½x2

R�
¼ b2nlq

2
l E½Dx2�E½x2�

¼ b21:

A similar calculation shows that the residual branch’s

scaling factor is multiplied by a2. To ensure that convo-

lutions within the main branch of the residual block have

the same scaling as those outside the block, we must

multiply their initialization by a factor c. We can calculate

the value of c required when geometric scaling is used for

an operation in layer l in the main branch:

Fig. 4 CIFAR-10 training loss for a strided AlexNet architecture. The

median as well as a 25%-75% IQR of 40 seeds is shown for each

initialization, where for each seed a sliding window of minibatch

training loss over 400 steps is used
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cl ¼
1R

nlþ1nlk
2
l E½W2

l �
2

¼ 1Rk
2
l nlþ1nl

nlþ1nlk
2
l c

2
l

¼ 1R=c
2
l

For cl to match c outside the block we thus need cl ¼
1R=a

2
l ¼ ðb2=c2Þ1R; i.e. c ¼ b. If the residual branch uses

convolutions (such as for channel widening operations or

down-sampling as in a ResNet-50 architecture) then they

should be scaled by a. Modifying the initialization of the

operations within the block changes E½FðxÞ2�; so a fixed

scalar multiplier must be introduced within the main

branch to undo the change, ensuring E½FðxÞ2� ¼ E½x2�.

11.1 Design of a pre-activation ResNet block

Using the principle above we can modify the structure of a

standard pre-activation ResNet block to ensure all convo-

lutions are well-conditioned both across blocks and against

the initial and final layers of the network. We consider the

full case now, where the shortcut path may include a

convolution that changes the channel count or the resolu-

tion. Consider a block of the form:

Bðx; a; bÞ ¼ aSðxÞ þ bFðxÞ

We consider a block with fan-in n and fan-out m. There are

two cases, depending on if the block is a downsampling

block or not. In the case of a downsampling block, a well-

scaled shortcut branch consists of the following sequence

of operations:

y0 ¼ AvgPool2Dðx; kernel size=2; stride=2Þ;
y1 ¼ y0 þ b0;

y2 ¼ Cðy1; op=m; ks=1; c ¼ a=4Þ;
y3 ¼ y2=

ffiffiffiffiffiffiffiffi

a=4
p

:

In our notation, C is initialized with the geometric initial-

ization scheme of Eq. 3 using numerator c ¼ a. Here, op is

output planes and ks is the kernel size. The constant 4

corrects for the downsampling, and the constant a is used to

correct the scaling factor of the convolution as described

above. In the non-downsampled case, this simplifies to

y0 ¼ xþ b0;

y1 ¼ Cðy0; op=m; ks=1; c ¼ aÞ;
y2 ¼ y1=

ffiffiffi

a
p

:

For the main branch of a bottlenecked residual block in a

pre-activation network, the sequence begins with a single

scaling operation x0 ¼
ffiffiffi

b
p

x, the following pattern is used,

with w being inner bottleneck width.

x1 ¼ ReLUðx0Þ

x2 ¼
ffiffiffi

2

b

s

x1

x3 ¼ x2 þ b1

x4 ¼ Cðx3; op=w; ks=1; c ¼ bÞ

Followed by a 3x3 conv:

x5 ¼ ReLUðx4Þ

x6 ¼
ffiffiffiffiffiffi

2

3b

s

x5

x7 ¼ x6 þ b2

x8 ¼ Cðx7; op=w; ks=3; c ¼ bÞ

and the final sequence of operations mirrors the initial

operation with a downscaling convolution instead of

upscaling. At the end of the block, a learnable scalar x9 ¼
v
ffiffi

b
p x8 with v ¼

ffiffiffi

b
p

is included following the approach of

[31], and a fixed scalar corrects for any increases in the

forward second moment from the entire sequence, in this

case, x9 ¼
ffiffiffiffi

m
bn

q

x8. This scaling is derived from Eq. 6 (b

here undoes the initial beta from the first step in the block).

11.2 Experimental results

We ran a series of experiments on an unnormalized pre-

activation ResNet-50 architecture using our geometric

initialization and scaling scheme both within and outside

of the blocks. We compared against the RescaleNet

unnormalized ResNet-50 architecture. Following their

guidelines, we added dropout which is necessary for

good performance and used the same a=b scheme that

they used. Our implementation is available in the sup-

plementary material. We performed our experiments on

the ImageNet dataset [29], using standard data prepro-

cessing pipelines and hyper-parameters. In particular, we

use batch-size 256, decay 0.0001, momentum 0.9, and

learning rate 0.1 with SGD, using a 30-60-90 decreasing

scheme for 90 epochs. Following our recommendation in

Sect. 7, we performed a sweep on the output scaling

factor and found that a 0.05 final scalar gives the best

results. Across 5 seeds, our approach achieved a test set

accuracy of 76.18 (SE 0.04), which matches the per-

formance of the RescaleNet within our test framework of

76.13 (SE 0.03). Our approach supersedes the ‘‘fixed

residual scaling’’ that they propose as a way of balancing

the contributions of each block.
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12 Related work

Our approach of balancing the diagonal blocks of the

Gauss-Newton matrix has close ties to a large literature

studying the input-output Jacobian of neural networks. The

Jacobian is the focus of study in a number of ways. The

singular values of the Jacobian are the focus of theoretical

study in [30, 35], where it’s shown that orthogonal ini-

tializations better control the spread of the spectrum

compared to Gaussian initializations. [8, 9] also study the

effect of layer width and depth on the spectrum. Regular-

ization of the jacobian, where additional terms are added to

the loss to minimize the Frobenius norm of the Jacobian,

can be seen as another way to control the spectrum

[12, 33], as the Frobenius norm is the sum of the squared

singular values. The spectrum of the Jacobian captures the

sensitivity of a network to input perturbations and is key to

the understanding of adversarial machine learning,

including generative modeling [26] and robustness [2, 15].

13 Conclusion

Although not a panacea, by using the scaling principle we

have introduced, neural networks can be designed with a

reasonable expectation that they will be optimizable by

stochastic gradient methods, minimizing the amount of

guess-and-check neural network design. Our approach is a

step towards ‘‘engineering’’ neural networks, where aspects

of the behavior of a network can be studied in an off-line

fashion before use, rather than by a guess-implement-test-

and-repeat experimental loop.

Appendix A: Forward and backward second
moments

We make heavy use of the equations for forward propa-

gation and backward propagation of second moments,

under the assumption that the weights are uncorrelated to

the activations or gradients. For a convolution

y ¼ CWðxÞ;

with input channels nl, output channels nlþ1; and square

k � k kernels, these formulas are (recall our notation for the

second moments is element-wise for vectors and matrices):

E½x2
lþ1� ¼ nlk

2
l E½W2�E½x2

l �; ð9Þ

E½Dx2
lþ1� ¼

q2
l E½Dx2�

q2
lþ1nlþ1k

2
l E½W2� : ð10Þ

Appendix B: Scaling properties of common
operations

Recall the scaling factor 1:

1l ¼ nlq
2
l E½Dx2

l �E½x2
l �;

we show in this section how common neural network

building blocks effect this factor.

Convolutions

Recall the rules for forward and back-propagated second

moments for randomly initialized convolutional layers:

E½x2
lþ1� ¼ nlk

2
l E½W2�E½x2

l �;

E½Dx2
lþ1� ¼

q2
l E½Dx2�

q2
lþ1nlþ1k

2
l E½W2� :

These relations require that W be initialized with a sym-

metric mean zero distribution. When applied to the scaling

factor we see that:

1lþ1 ¼ nlþ1q
2
lþ1E½Dx2

lþ1�E½x2
lþ1�

¼ nlþ1q
2
lþ1

q2
l E½Dx2�

q2
lþ1nlþ1k2E½W2� nlk

2E½W2�E½x2
l �

¼ nlq
2
l E½Dx2�E½x2

l �
¼ 1l:

Linear layers

These are a special case of convolutions with k ¼ 1 and

q ¼ 1.

Averaging pooling

If the kernel size is equal to the stride, then element-wise

we have:

Dxl ¼
1

k2
Dxlþ1;

So:

E Dx2
l

� �

¼ 1

k4
E Dx2

lþ1

� �

:

ReLU

If the input to a ReLU is centered and symmetrically dis-

tributed, then during the forward pass, half of the inputs are

zeroed out in expectation, meaning that E½x2
lþ1� ¼ 1

2
E½x2

l �.
The backward operation just multiplies Dxlþ1 by the zero
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pattern used during the forward pass, so it also zeros half of

the entries, giving E½Dx2
l � ¼ 1

2
E½Dx2

lþ1� So:

1lþ1 ¼ nlþ1q
2
lþ1E½Dx2

lþ1�E½x2
lþ1�

¼ nlq
2
l E½Dx2

lþ1�E½x2
lþ1�

¼ nlq
2
l 2E½Dx2

l �
1

2
E½x2

l �

¼ 1l:

Dropout

The reasoning for dropout is essentially the same as for the

ReLU. If nodes are dropped out with probability p, then

E½x2
lþ1� ¼ ð1 � pÞE½x2

l � and E½Dx2
l � ¼ 1 � pð ÞE½Dx2

lþ1�. So

scaling is maintained. Note that in the PyTorch imple-

mentation, during training the outputs are further multi-

plied by 1=ð1 � pÞ.

Scalar multipliers

Consider a layer:

xlþ1 ¼ ulxl:

Then

E½x2
lþ1� ¼ u2

l E½x2
l �;

and

E½Dx2
l � ¼ u2

l E½Dx2
l �;

so the forward and backward signals are multiplied by u2
l ,

which maintains scaling.

Residual blocks

Consider a residual block of the form:

xlþ1 ¼ xl þ RðxlÞ;

for some operation R. Suppose that E½RðxÞ2� ¼ s2E½x2� for

some constant s. The forward signal second moment gets

multiplied by 1 þ s2ð Þ after the residual block:

E½x2
lþ1� ¼ E½x2

l � 1 þ s2
� �

:

The backwards signal second moment is also multiplied by

s:

E½Dx2
l � ¼ 1 þ s2

� �

E½Dx2
lþ1�:

So:

1lþ1 ¼ E½Dx2
lþ1�E½x2

lþ1�

¼ 1

1 þ s2ð ÞE½Dx
2
l �E½x2

l � 1 þ s2
� �

¼ 1l:

Appendix C: Extrinsic and intrinsic form
equivalence

Recall the extrinsic definition of cl:

1l ¼ nlq
2
l E½Dx2

l �E½x2
l �:

We rewrite this as:

nlq
2
l E½x2

l � ¼
1l

E½Dx2
l �
:

Then by using the forward and backward relations Eqs. 9

and 10:

cl ¼ nin
l k

2
l q

2
lþ1E x2

l

� �2E½Dx2
lþ1�

E½x2
lþ1�

¼ k2
l E x2

l

� � q2
lþ11lE½Dx2

lþ1�
q2
l E½Dx2

l �E½x2
lþ1�

ð1 substitutionÞ

¼ k2
l E x2

l

� � q2
lþ11lE½Dx2

lþ1�
q2
l E½Dx2

l �nlk2
l E½W2

l �E½x2
l �

(forward)

¼ E½Dx2
lþ1� �

q2
lþ11l

q2
l E½Dx2

l �nlE½W2
l �

¼ q2
l E½Dx2

l �
q2
lþ1nlþ1k2E½W2

l �
�

q2
lþ11l

q2
l E½Dx2

l �nlE½W2
l �

(back)

¼ 1l
nlþ1nlk2E½W2

l �
2
:

Appendix D: The weight gradient ratio is
equal to GR scaling for MLP models

Theorem 3 The weight-gradient ratio ml is equal to the
scaling cl factor under the assumptions of Sect. 3.

Proof First, we rewrite Eq. 9 to express E½W2� in terms of
forward moments:
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E½x2
lþ1� ¼ nlk

2
l E½W2�E½x2

l �;

)E½W2� ¼
E½x2

lþ1�
nlk

2
l E½x2

l �
:

For the gradient w.r.t to weights of a convolutional layer,

we have:

E½DW2
l � ¼ q2

l E½x2
l �E½Dx2

lþ1�:

Therefore:

ml ¼
E½DW2

l �
E½W2

l �

¼ nin
l k

2
l E x2

l

� �2E½Dx2
lþ1�

E½x2
lþ1�

¼ cl:

Appendix E: Scaling of scalar multipliers

Consider the layer:

xlþ1 ¼ ulxl

with a single learnable scalar ul. Using :

E½x2
lþ1� ¼ E u2

l

� �

E½x2
l �;

we have:

E u2
l

� �

¼ E½x2
lþ1�

E½x2
l �

:

Likewise from the equations of back-prop we have:

Du ¼
X

nl

c

X

ql

i

X

ql

j

Dxlþ1;c;i;jxl;c;i;j;

so

E½Du2� ¼ nlq
2
l E½Dx2

lþ1�E½x2
l �:

Therefore:

ml ¼
E½Du2

l �
E½u2

l �
¼ nlq

2
l E½x2

l �
2 E½Dx2

lþ1�
E½x2

lþ1�
: ð11Þ

This equation is the same for a 1x1 convolutional layer. We

can write the scaling factor in terms of the weight u more

directly, by rearranging the scaling rule as:

1l
E½Dx2

l �E½x2
l �
¼ nlq

2
l ;

and substituting it into Eq. 11:

nlq
2
l E½x2

l �
2 E½Dx2

lþ1�
E½x2

lþ1�
¼ 1l

E½Dx2
l �E½x2

l �
E½x2

l �
2 E½Dx2

lþ1�
E½x2

lþ1�

¼ 1l
E½Dx2

l �
E½x2

l �
E½Dx2

lþ1�
E½x2

lþ1�

¼ 1l
E½Dx2

l �
E½x2

l �
E½Dx2

l �
E½u2

l �
2E½x2

l �

¼ 1l
E½u2

l �
2
:

To ensure that the scaling factor matches that of convolu-

tions used in the network, suppose that geometric initial-

ization is used with global constant c, then each

convolution has cl ¼ 1l=c
2, so we need:

E½u2
l � ¼ c;

or just ul ¼
ffiffiffi

c
p

. Notice that if we had used a per-channel

scalar instead, then the layer scaling would not match the

scaling of convolution weights, which would result in

uneven layer scaling in the network. This motivates using

scalar rather than channel-wise scaling factors.

Appendix F: The Gauss–Newton matrix

Standard ReLU classification and regression networks have

a particularly simple structure for the Hessian with respect

to the input, as the network’s output is a piecewise-linear

function g feed into a final layer consisting of a convex log-

softmax operation, or a least-squares loss. This structure

results in the Hessian with respect to the input being

equivalent to its Gauss–Newton approximation. The

Gauss–Newton matrix can be written in a factored form,

which is used in the analysis we perform in this work. We

emphasize that this is just used as a convenience when

working with diagonal blocks, the GN representation is not

an approximation in this case.

The (Generalized) Gauss-Newton matrix G is a positive

semi-definite approximation of the Hessian of a non-con-

vex function f, given by factoring f into the composition of

two functions f ðxÞ ¼ hðgðxÞÞ where h is convex, and g is

approximated by its Jacobian matrix J at x, for the purpose

of computing G:

G ¼ JT r2hðgðxÞÞ
� �

J:

The GN matrix also has close ties to the Fisher information

matrix [23], providing another justification for its use.

Surprisingly, the Gauss-Newton decomposition can be

used to compute diagonal blocks of the Hessian with

respect to the weights Wl as well as the inputs [23]. To see

this, note that for any activation yl, the layers above may be

treated in a combined fashion as the h in a f ðWlÞ ¼
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hðgðWlÞÞ decomposition of the network structure, as they

are the composition of a (locally) linear function and a

convex function and thus convex. In this decomposition

gðWlÞ ¼ Wlxl þ bl is a function of Wl with xl fixed, and as

this is linear in Wl, the Gauss-Newton approximation to the

block is thus not an approximation.

Appendix G: GR scaling derivation

Our quantity of interest is the average squared singular

value of Gl, which is simply equal to the (element-wise)

non-central second moment of the product of G with a i.i.d

normal random vector r:

E½ Glrð Þ2� ¼ E½ JTl RlJlr
� �2�:

Recall that our notation E½X2� refers to the element-wise

non-central second moment of the vector. To compute the

second moment of the elements of Glr, we can calculate

the second moment of matrix-random-vector products

against Jl, Rl and JTl separately since R is uncorrelated with

Jl, and the back-propagated gradient Dyl is uncorrelated

with yl (Assumption A3).

Jacobian products Jl and JTl

Note that each row of Jl has nin
l non-zero elements, each

containing a value from xl. This structure can be written as

a block matrix,

Jl ¼
xl 0 0

0 xl 0

0 0 . .
.

2

6

6

4

3

7

7

5

; ð12Þ

Where each xl is a 1 � nin
l row vector. This can also be

written as a Kronecker product with an identity matrix as

Inout
l
� xl. The value xl is i.i.d random at the bottom layer of

the network. For layers further up, the multiplication by a

random weight matrix from the previous layer ensures that

the entries of xl are identically distributed. So we have:

E Jlrð Þ2
h i

¼ nin
l E½r2�E½x2

l � ¼ nin
l E½x2

l �: ð13Þ

Note that we didn’t assume that the input xl is mean zero,

so Var½xl� 6¼ E½x2
l �: This is needed as often the input to a

layer is the output from a ReLU operation, which will not

be mean zero.

For the transposed case, we have a single entry per

column, so when multiplying by an i.i.d random vector u

we have:

E JTl u
� �2
h i

¼ E½u2�E½x2
l �: ð14Þ

Upper Hessian Rl product

Instead of using Rlu, for any arbitrary random u, we will

instead compute it for u ¼ yl=E½y2
l �, it will have the same

expectation since both Jlr and yl are uncorrelated with Rl.

The piecewise linear structure of the network above yl with

respect to the yl makes the structure of Rl particularly

simple. It is a least-squares problem gðylÞ ¼ 1
2

Uyl � tk k2

for some U that is the linearization of the remainder of the

network. The gradient is Dy ¼ UT Uy� tð Þ and the Hessian

is simply R ¼ UTU. So we have that

E Dy2
l

� �

¼ E
1

nout
l

UT Uy� tð Þ
�

�

�

�

2
� 	

¼ E
1

nout
l

UTUy
�

�

�

�

2
� 	

þ E
1

nout
l

UT t
�

�

�

�

2
� 	

¼ E
1

nout
l

UTUy
�

�

�

�

2
� 	

þ O
1

nout
l


 �

:

¼ E Rlylð Þ2
h i

þ O
1

nout
l


 �

:

Applying this gives:

E Rluð Þ2 ¼ E½u2�E½ Rlylð Þ2�=E½y2
l � ð15Þ

¼ E½u2�E½Dy2
l �=E½y2

l � þ O
E½u2�

nout
l E½y2

l �


 �

ð16Þ

Combining

To compute E½ Glrð Þ2� ¼ E½ JTl RlJlr
� �2� we then combine

the simplifications from Eqs. 13, 14 and 15 to give:

E½ Glrð Þ2� ¼ nin
l E x2

l

� �2E½Dy2
l �

E½y2
l �

þ O
nin
l E x2

l

� �2

nout
l E½y2

l �

 !

:

Appendix H: Details of LibSVM dataset
input/output scaling

To prevent the results from being skewed by the number of

classes and the number of inputs affecting the output

variance, the logit output of the network was scaled to have

standard deviation 0.05 after the first minibatch evaluation

for every method, with the scaling constant fixed thereafter.

LayerNorm was used on the input to whiten the data.

Weight decay of 0.00001 was used for every dataset. To

aggregate the losses across datasets we divided by the

worst loss across the initializations before averaging.
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