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Abstract

In this work we propose a differential geometric motivation for Nesterov’s accelerated
gradient method (AGM) for strongly-convex problems. By considering the optimization
procedure as occurring on a Riemannian manifold with a natural structure, The AGM
method can be seen as the proximal point method applied in this curved space. This
viewpoint can also be extended to the continuous time case, where the accelerated
gradient method arises from the natural block-implicit Euler discretization of an ODE
on the manifold. We provide an analysis of the convergence rate of this ODE for
quadratic objectives.

Bregman proximal operators and geodesics

Bregman divergences arise in optimization primarily through their use in proximal steps. A Bregman
proximal operation balances finding a minimizer of a given function f with maintaining proximity to
a given point y, measured using a Bregman divergence instead of a distance metric:

2" = argmin { f(z) + pBy(x, 2" 1)} . 3)

A core application of this would be the mirror descent step [Nemirovski and Yudin, 1983, Beck and
Teboulle, 2003], where the operation is applied to a linearized version of f instead of f directly:

" = arg mwin {2, V(" 1)) + pBy(z, 2" )} .

Bregman proximal operations can be interpreted as geodesic steps with respect to the dual connection.
The key idea is that given an input point z* !, they output a point z such that the velocity of the
connecting geodesic is equal to —V% f(x) at x. This velocity is measured in the flat coordinate

system of the connection, the dual coordinates. To see why, consider a geodesic y(t) = (1 —

t)Vo(xF~1) +tVp(z*). Here 25~ ! and z* are in primal coordinates and () is in dual coordinates.

The velocity is %~(t) = Vp(z*) — V(z#~1). Contrast to the optimality condition of the Bregman
prox (Equation 3):
1 _
—SVIEh) = Vo(at) = Vo),
For instance, when using the Euclidean penalty the step is:

z¥ = argmin, { f(z) + & ||z — xk_lHQ}.

The final velocity is just z* — 2=, and so 2* — z*~1 = —%Vf(a:k), which is the solution of the
proximal operation.
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ON THE CURVED GEOMETRY OF
ACCELERATED OPTIMIZATION

Primal-dual form of the proximal point method

The proximal point method is the building block from which we will construct the accelerated
gradient method. Consider the basic form of the proximal point method applied to a strongly convex
function f. At each step, the iterate ¥ is constructed from z*~! by solving the proximal operation
subproblem given an inverse step size parameter 7:

ok :argmgn{f(x)—l—gHx—xk—1H2}. @)

This step can be considered an implicit form of the gradient step, where the gradient 1s evaluated at
the end-point of the step instead of the beginning:

1
pt =t - ;Vf(xk)a

which is just the optimality condition of the subproblem in Equation 4, found by taking the derivative
V f(x) +nx — nz*~1 to be zero. A remarkable property of the proximal operation becomes apparent
when we rearrange this formula, namely that the solution to the operation is not a single point but a
primal-dual pair, whose weighted sum is equal to the input point:

1
"t + EVf(a:k) = g1,

If we define ¢g* = Vf(2¥), the primal-dual pair obeys a duality relation: g = Vf(z"*) and
% = V f*(g*), which allows us to interchange primal and dual quantities freely. Indeed we may
write the condition in a dual form as:

vf* (gk) + %gk _ xk_l, (5)

which 1s the optimality condition for the proximal operation:
. . 1 12
o =argmin{ 1°() + 5 }g — "
g 2m

Our goal in this section is to express the proximal point method in terms of a dual step, and while this
equation involves the dual function f*, it is not a step in the sense that ¢” is formed by a proximal
operation from ¢~ 1.

We can manipulate this formula further to get an update of the form we want, by simply adding and
subtracting g®~! from 5:

* 11, L1,
Vf (gk)+59k:—g’“ 1+<xk 1—591“ 1>,

n
Which gives the updates:
: . _ 1 . 1 2
g —argmin{ £°(9) = (g, 2 = b4 g — gt
g 7 2m
1
2k = gkl _ gk,

U
We call this the primal-dual form of the proximal point method.
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The proximal point method is rarely used in practice due to the difficulty of computing the solution to
the proximal subproblem. It is natural then to consider modifications of the subproblem to make it
more tractable. The subproblem becomes particularly simple if we replace the proximal operation
with a Bregman proximal operation with respect to f*,

. . _ 1, _
gk:argm;n{f (g)—<g, " 1—59’“ 1>+TBf*(9,gk 1)}-

We have additionally changed the penalty parameter to a new constant 7, which 1s necessary as the
change to the Bregman divergence changes the scaling of distances. We discuss this further below.

Recall from Section 4 that Bregman proximal operations follow geodesics. The key i1dea 1s that we
are now following a geodesic in the dual connection of ¢ = f*, using the notation of Section 3, which
is a straight-line in the primal coordinates of f due to the flatness of the connection (Section 3). Due
to the flatness property, a simple closed-form solution can be derived by equating the derivative to O:

VI (eh) - [xk _ ;gk] £V (g — Y (gE ) = 0,
therefore g° = V f ((1 + ’7')_1 [a:k_l — %gk_l + TVf*(gk_l)]) :

This formula gives ¢g” in terms of the derivative of known quantities, as V f*(¢*~1) is known from
the previous step as the point at which we evaluated the derivative at. We will denote this argument
to the derivative operation g, so that g* = V f(y*). It no longer holds that g* = V f(x*) after the
change of divergence. Using this relation, y can be computed each step via the update:

gh=1 _ Lgh=1 1 ryk—1

k n
147

y:

In order to match the accelerated gradient method exactly we need some additional flexibility in the

step size used in the y* update. To this end we introduce an additional constant « in front of g1,

which 1s 1 for the proximal point variant. The full method 1s as follows:

Bregman form of the accelerated gradient method
k—1 o k—1 k—1
b = T hy Ty
147 ’
9" =V I(y"),
1
b = F 1l = —gk. (6)
N

This 1s very close to the equational form of Nesterov’s method explored by Lan and Zhou [2017], with
the change that they assume an explicit regularizer is used, whereas we assume strong convexity of f.
Indeed we have chosen our notation so that the constants match. This form 1s algebraically equivalent
to other known forms of the accelerated gradient method for appropriate choice of constants. Table 1
shows the direct relation between the many known ways of writing the accelerated gradient method
in the strongly-convex case (Proofs of these relations are in the Appendix). When f is p-strongly
convex and L-smooth, existing theory implies an accelerated geometric convergence rate of at least

1 — \/% for the parameter settings [Nesterov, 2013]:

N = \,/LL, T:%, Oé:l—I—LT'

In contrast, the primal-dual form of the proximal point method achieves at least that convergence rate

for parameters:
N =L, T:%, a=1.

The difference in 7 arises from the difference in the scaling of the Bregman penalty compared to
the Euclidean penalty. The Bregman generator f* is strongly convex with constant 1/ whereas

the Euclidean generator £ ||- H2 is strongly convex with constant 1, so the change in scale requires
rescaling by L.

Convergence in continuous time

—— Prox ODE
—— AGM ODE |
—e=- Prox
e AGM

The natural analogy to convergence in continuous time 1S~ 20}
known as the decay rate of the ODE. A sufficient condition
for an ODE with parameters u = [z;g| to decay with 15/
constant p 1s:

lu(t) — u™|| < exp (=tp) [[u(0) —u™],
where u™ 1s a fixed point. We can relate this to the discrete
case by noting that exp(—tp) = limy_,o(1 — £p)*, s0
given our discrete-time convergence rate 1s proportional to
(1 — +/u/L)*, we would expect values of p proportional

to \/u/L if the ODE behaves similarly to the discrete  -of
process. We have been able to establish this result for both -1z -10 -08 -06 -04 -0z 00 02 04
the proximal and AGM ODEs for quadratic objectives
(proof in the Appendix in the supplementary material).

Theorem 1. The proximal and AGM ODEs decay with
at least the following rates for u-strongly convex and L-
smooth quadratic objective functions when using the same hyper-parameters as in the discrete
case:
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Figure 2: Paths for the quadratic problem
f(x) =2zl Az with A = [2, 1; 1, 3].
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Figure 2 contrasts the convergence of the discrete and continuous variants. The two methods have
quite distinct paths whose shape 1s shared by their ODE counterparts.



