ON THE CURVED GEOMETRY OF ACCELERATED OPTIMIZATION

Abstract

In this work we propose a differential geometric motivation for Nesterov's accelerated gradient method (AGM) for strongly-convex problems. By considering the optimizatio procedure as occurring on a Riemannian manifold with a natural structure, The AGM method can be seen as the proximal point method applied in this curved space. This viewpoint can also be extended to the continuous time case, where the accelerated on the manifold. We provide an analysis of the convergence rate of this ODE for quadratic objectives.

Bregman proximal operators and geodesics

Bregman divergences arise in optimization primarily through their use in proximal steps. A Bregman proximal operation balances finding a a minimizer of a given function f with maintaining proximity to
a given point y, measured using a bregman divergence instead of a distance metric:

$$
x^{k}=\arg \min _{x}\left\{f(x)+\rho B_{\phi}\left(x, x^{k-1}\right)\right\}
$$

A core application of this would be the mirror descent step [Nemirovski and Yudin, 1983 , Beck and
Teboulle, 2003], where the operation is applied to a linearized version of f instead of f directly:

$$
x^{k}=\arg \min _{x}\left\{\left\langle\left\langle, \nabla f\left(x^{k-1}\right)\right\rangle+\rho B_{\phi}\left(x, x^{k-1}\right)\right\}\right.
$$

Bregman proximal operations can be interpretec as geodesic steps wint respect the tuat comedion
The key idea is that given an input point x^{k-1}, they output a point x such that the velocity of the connecting geodesic is equal to $-\nabla \frac{1}{\rho} f(x)$ at x. This velocity is measured in the flat coordinate system of the connection, the dual coordinates. To see why, consider a geodesic $\gamma(t)=($ $t) \nabla \phi\left(x^{k-1}\right)+t \nabla \phi\left(x^{k}\right)$. Here x^{k-1} and x^{k} are in primal coordinates and $\gamma(t)$ is in dual coordinates.
The velocity is $d \gamma(t)=\nabla \phi\left(x^{k}\right)-\nabla \phi\left(x^{k-1}\right)$ Contrast to the optimality condition of the Rregman The velocity is $\frac{d}{d} \gamma(t)=\nabla \phi\left(x^{k}\right)-\nabla \phi\left(x^{k-1}\right)$. Contrast to the optimality condition of the Bregma
prox (Equation 3):
prox (Equation 3):
$-\nabla f\left(x^{k}\right)=\nabla \phi\left(x^{k}\right)-\nabla \phi\left(x^{k-1}\right)$.
For instance, when using the Euclidean penalty the step is:

$$
x^{k}=\arg _{\min }^{x} \text { \{ }\left\{f(x)+\frac{\rho}{2}\left\|x-x^{k-1}\right\|^{2}\right\} .
$$

The final velocity is just $x^{k}-x^{k-1}$, and so $x^{k}-x^{k-1}=-\frac{1}{\rho} \nabla f\left(x^{k}\right)$, which is the solution of the proximal operation.

Euclidean (primal) coordinates

Dual coordinates

Primal-dual form of the proximal point method
The proximal point method is the building block from which we will construct the accelerated gradient method. Consider the basic form of the proximal point method applied to a strongly convex
function f. At each step, the iterate x^{k} is constructed from x^{k-1} by solving the proximal operation unction f. At each step, the iterate x^{k} is constructed from x^{k-1} by solving the proximal operatio problem given an inverse step size parameter η :

$$
x^{k}=\arg \min _{x}\left\{f(x)+\frac{\eta}{2}\left\|x-x^{k-1}\right\|^{2}\right\} .
$$

This step can be considered an implicit form of the gradient step, where the gradient is evaluated a

$$
x^{k}=x^{k-1}-\frac{1}{\eta} \nabla f\left(x^{k}\right),
$$

which is just the optimality condition of the subproblem in Equation 4, found by taking the derivative when we rearrange this formula, namely that the solution to the operation is not a single point but a imal-dual pair, whose weighed sum is equal to the input point.

$$
x^{k}+\frac{1}{\eta} \nabla f\left(x^{k}\right)=x^{k-1} .
$$

If we define $g^{k}=\nabla f\left(x^{k}\right)$, the primal-dual pair obeys a duality relation: $g^{k}=\nabla f\left(x^{k}\right)$ and
$x^{k}=\nabla f^{*}\left(g^{k}\right)$, which allows us to interchange primal and dual quantities freely. Indeed we may $=\nabla f^{*}\left(g^{*}\right)$, which allows us
$\nabla f^{*}\left(g^{k}\right)+\frac{1}{\eta} g^{k}=x^{k}$
which is the optimality condition for he proximal operat

$$
g^{k}=\arg \min _{g}\left\{f^{*}(g)+\frac{1}{2 \eta}\left\|g-\eta x^{k-1}\right\|^{2}\right\}
$$

Our goal in this section is to express the proximal point method in terms of a dual step, and while this
equation involves the dual function f^{*}, it is not a step in the sense that g^{k} is formed by a proximal equation involves the dual function f^{*}, it is not a step in the sense that g^{k} is formed by a proxima
operation from g^{k-1}.
We can manipulate this formula further to get an update of the form we want, by simply adding an subtracting g^{k-1} from

$$
\nabla f^{*}\left(g^{k}\right)+\frac{1}{\eta} g^{k}=\frac{1}{\eta} \eta^{k-1}+\left(x^{k-1}-\frac{1}{\eta} g^{k-1}\right),
$$

Which gives the updates:

$$
\begin{aligned}
& \qquad g^{k}=\arg \min \left\{f^{*}(g)-\left\langle g, x^{k-1}-\frac{1}{\eta} g^{k-1}\right\rangle+\frac{1}{2 \eta}\left\|g-g^{k-1}\right\|^{2}\right\} \\
& x^{k}=x^{k-1}-\frac{1}{g^{k}} .
\end{aligned}
$$

Form Name	Algorithm	Relations
$\underset{\substack{\text { Nesterov [2013] I }}}{\text { for }}$	$\begin{aligned} \hline y^{k} & =\frac{\alpha \gamma v^{k}+\gamma x^{k}}{\alpha \mu+\gamma} \\ x^{k+1} & =y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right), \\ v^{k+1} & =(1-\alpha) v^{k}+\frac{\alpha \mu}{\gamma} y^{k}-\frac{\alpha}{\gamma} \nabla f\left(y^{k}\right) \end{aligned}$	$\begin{aligned} & a_{\mathrm{NNSs}}=\sqrt{\mu / L} \\ & \gamma_{\mathrm{Nes}}=\mu . \end{aligned}$
$\underset{\substack{\text { Nesterov [2013] } \\ \text { form II }}}{\text { In }}$	$\begin{aligned} & x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right), \\ & y^{k+1}=x^{k+1}+\beta\left(x^{k+1}-x^{k}\right) \end{aligned}$	$\beta_{\text {Nes }}=\frac{\sqrt{L}-\sqrt{\text { I }}}{\sqrt{L}+\sqrt{\mu}}$
Sutskever et al [2013]	$\begin{aligned} & p^{k+1}=\beta p^{k}-\frac{1}{\bar{L}} \nabla f\left(x^{k}+\beta p^{k}\right), \\ & x^{k+1}=x^{k}+p^{k+1} \end{aligned}$	
Modern Momentum 1	$\begin{aligned} & p^{k+1}=\beta p^{k}+\nabla f\left(x^{k}\right), \\ & x^{k+1}=x^{k}-\frac{1}{L}\left(\nabla f\left(x^{k}\right)+\beta p^{k+1}\right) . \end{aligned}$	$\begin{aligned} & x_{\mathrm{mod}}^{k}=x_{\text {sut }}^{k}+\beta p_{\mathrm{sta}}^{k}=y_{\mathrm{Nese}}^{k} \\ & p_{\mathrm{mod}}^{k}=-L p_{\mathrm{sutu}}^{k} \end{aligned}$
Auslender and Teboulle [2006	$\begin{aligned} y^{k} & =(1-\theta) \hat{x}^{k}+\theta z^{k}, \\ z^{k+1} & =z^{k}-\frac{\gamma}{\theta} \nabla f\left(y^{k}\right), \\ \hat{x}^{k} & =(1-\theta) \hat{x}^{k}+\theta z^{k+1} \end{aligned}$	
$\begin{aligned} & \text { Lan and Zhou } \\ & {[2017]} \end{aligned}$		

The proximal point method is rarely used in practice due to the difficulty of computing the solution to
the proximal subproblem. It is natural then to consider modificaions of the subproblem to make it the proximal subproblem. II is natura then to consider modifications of the subproblem to make
morer tractable. The subproblem beomes particularly simple if we replace the proximal operation
with a Bregman proximal operation with respect or to f^{*},

$$
g^{k}=\arg \min _{g}\left\{f^{*}(g)-\left\langle g, x^{k-1}-\frac{1}{\eta} g^{k-1}\right\rangle+\tau B_{f^{*}}\left(g, g^{k-1}\right)\right\}
$$

We have additionally changed the penalty parameter to a new constant τ, which is necessary as the
change to the Bregman divergence changes the scaling of distances. We discuss this further below. Recall from Section 4 that Bregman proximal operaions follow seodesics. The ide is Recal from Section 4 that Bregman proximal operations follow geodesics. The key idea is that we
are now is a straight line in the primal coordiantes of f due to the flatesss of the comenection (hection). . Due
to the flatress property a simple closedform solution can be derived by equating the derivative to 0 .

$$
\begin{aligned}
& \nabla f^{*}\left(g^{k}\right)-\left[x^{k-1}-\frac{1}{\eta} g^{k-1}\right]+\tau \nabla f^{*}\left(g^{k}\right)-\tau \nabla f^{*}\left(g^{k-1}\right)=0, \\
& \text { therefore } g^{k}=\nabla f\left((1+\tau)^{-1}\left[x^{k-1}-\frac{1}{\eta} g^{k-1}+\tau \nabla f^{*}\left(g^{k-1}\right)\right]\right)
\end{aligned}
$$

This formula gives g^{k} in terms of the derivative of known quantities, as $\nabla f^{*}\left(g^{k-1}\right)$ is known fron
the previous step as the point at which we evaluated the derivative at. We will denote this argument he previous step as the point at which we evaluated the derivative at. We will denote this argument
the derivative operation y, so that $g^{k}=\nabla f\left(y^{k}\right)$. It no longer holds that $g^{k}=\nabla f\left(x^{k}\right)$ atter the ange of divergence. Using this relation y can be computed each step via the update:

$$
y^{k}=\frac{x^{k-1}-\frac{1}{\eta} g^{k-1}+\tau y^{k-1}}{1+\tau}
$$

In order to match the accelerated gradient method exactly we need some additional flexibility in the step size used in the y^{k} update. To this end we introduce an additional
which is 1 for the proximal point variant. The full method is as follows.

Bregman form of the accelerated gradient method	
y^{k}	$=\frac{x^{k-1}-\frac{\alpha}{\eta} g^{k-1}+\tau y^{k-1}}{1+\tau}$,
g^{k}	$=\nabla f\left(y^{k}\right)$,
x^{k}	$=x^{k-1}-\frac{1}{\eta} g^{k}$.

This is very close to the equational form of Nesterov's method explored by Lan and Zhou [2017], with the change that they assume an explicit regularizzer is used, whereas we assume strong convexity of
Indeed we have chosen our notation so that the constants match. This orm is algebraically equivale to other known forms of the accelerated gradient method for approppriate choice of constants. Table in the strongly-convex case (Proofs of these relations are in the Appendix). When f is μ-strongly
convex and L-smooth, existing theory implies an accelerated geometric convergence rate of at leas $-\sqrt{\frac{\pi}{L}}$ for the parameter settings [Nesterov, 2013]:

$$
\eta=\sqrt{\mu L}, \quad \tau=\frac{L}{\eta}, \quad \alpha=\frac{\tau}{1+\tau}
$$

for past, he shmaldaal for $n=\sqrt{ }$, $\alpha=$
The difference in τ arises from the difference in the scaling of the Bregman penalty compared to . fescaling by L.
Convergence in continuous time
The natural analogy to convergence in continuous time is known as the decay rate of the toDE. A sufficicent condition for an ODE
constant ρ is
$u(t)-u^{*}\|\leq \exp (-t \rho)\| u(0)-u^{*} \|$,
where u^{*} is a fixed point. We can relate this to the discrete case by noting that $\exp (-t \rho)=\lim _{k \rightarrow \infty}\left(1-\frac{t}{t} \rho\right)^{k}$, so
given our discrete-time convergence rate is proportional to $(1-\sqrt{\mu / L})^{k}$, we would expect values of ρ proportional $10 \sqrt{\mu / L}$ if the ODE behaves similarly to the discrete
process. We have been able to establish this result for both e proximal and AGM ODEs for quadratic objectiv. (proof in the Appendix in the supplementary material). Figure 2: Paths for the quadratic problem at least the following rates for μ-strongly convex and L smooth quadratic objective functions when using the same hyper-parameters as in the discrete

$$
\rho_{p r o x} \geq \frac{\sqrt{H}}{\sqrt{\mu}+\sqrt{L}}, \quad \rho_{A G M} \geq \frac{1}{2} \sqrt{\frac{H}{L}}
$$

uous variants. The two methods have quite distinct paths whose shape is shared by their ODE counterparts.

