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In this work we propose a differential geometric motivation for Nesterov's accelerated 
gradient method (AGM) for strongly-convex problems. By considering the optimization 
procedure as occurring on a Riemannian manifold with a natural structure, The AGM 
method can be seen as the proximal point method applied in this curved space. This 
viewpoint can also be extended to the continuous time case, where the accelerated 
gradient method arises from the natural block-implicit Euler discretization of an ODE 
on the manifold. We provide an analysis of the convergence rate of this ODE for 
quadratic objectives. 

Abstract

Table 1: Equivalent forms of Nesterov’s method for µ-strongly convex, L-smooth f . Proofs of the
stated relations are available in the appendix.

Form Name Algorithm Relations

Nesterov [2013]
form I

yk =
↵�vk + �xk

↵µ+ �

xk+1 = yk � 1
L
rf(yk),

vk+1 = (1� ↵) vk +
↵µ
�

yk � ↵
�
rf(yk)

↵Nes =
p

µ/L

�Nes = µ.

Nesterov [2013]
form II

xk+1 = yk � 1
L
rf(yk),

yk+1 = xk+1 + �
⇣
xk+1 � xk

⌘ �Nes =
p

L�p
µp

L+
p
µ

Sutskever et al.
[2013]

pk+1 = �pk � 1
L
rf

⇣
xk + �pk

⌘
,

xk+1 = xk + pk+1

pk+1
Sut = xk+1

Nes � xk
Nes,

yk
Nes = xk

Sut + �pkSut.

Modern
Momentum1

pk+1 = �pk +rf(xk),

xk+1 = xk � 1
L

⇣
rf(xk) + �pk+1

⌘
.

xk
mod = xk

Sut + �pkSut = yk
Nes,

pkmod = �LpkSut.

Auslender and
Teboulle [2006]

yk = (1� ✓)x̂k + ✓zk,

zk+1 = zk � �
✓
rf(yk),

x̂k = (1� ✓)x̂k + ✓zk+1.

✓AT = 1� �Nes,

x̂k
AT = xk

Nes,

yk
AT = yk

Nes = xk
mod,

�AT = 1/L.

Lan and Zhou
[2017]

x̃k = ↵(xk�1 � xk�2) + xk�1,

xk =
x̃k + ⌧xk�1

1 + ⌧
,

gk = rf(xk),

xk = xk�1 � 1
⌘
gk.

xk
Lan = zkAT,

xk
Lan = yk

AT,

⌘Lan =
�AT

✓AT
,

⌧Lan =
1� ✓AT

✓AT
,

↵Lan = 1� ✓AT.

Recall that for a convex function � we may define the convex conjugate �
⇤(y) =

maxx {hx, yi � �(x)} . The dual coordinate system we define simply identifies each point x, when
expressed in Euclidean (“primal”) coordinates, with the vector of “dual” coordinates:

y = r�(x).

Our assumptions of smoothness and strong convexity imply this is a one-to-one mapping, with inverse
given by x = r�

⇤(y). The remarkable fact that the gradient of the conjugate is the inverse of the
gradient is a key building block of the theory in this paper.

The notion of biorthogonality refers to natural tangent space coordinates of these two systems. A
tangent vector v at a point x can be converted to a vector u of dual (tangent space) coordinates using
matrix multiplication with the Hessian [Shima, 2007]:

u = H(x)v, (1)

Given the definition of the metric above, it is easy to see that if we have two vectors v1 and v2, we
may express v2 in dual coordinates u2 so that the metric tensor takes the simple form:

gx(v1, v2) = v
T
1 H(x)v2 = v

T
1 H(x)

�
H(x)�1

u2

�
= v

T
1 u2,

which is the biorthogonal relation between the two tangent space coordinate systems.

Dual Flat Connections
There is an obvious connection �

(E) we can apply to the Hessian manifold, the Euclidean connection
that trivially identifies straight lines in Rn as geodesics. Normally when we perform gradient descent

1PyTorch & Tensorflow (for instance) implement this form. Evaluating the gradient and function at the
current iterate xk instead of a shifted point makes it more consistent with gradient descent when wrapped in a
generic optimization layer.
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6 Acceleration as a change of geometry
The proximal point method is rarely used in practice due to the difficulty of computing the solution to
the proximal subproblem. It is natural then to consider modifications of the subproblem to make it
more tractable. The subproblem becomes particularly simple if we replace the proximal operation
with a Bregman proximal operation with respect to f

⇤,

g
k = argmin

g

⇢
f
⇤(g)�

⌧
g, x

k�1 � 1

⌘
g
k�1

�
+ ⌧Bf⇤(g, gk�1)

�
.

We have additionally changed the penalty parameter to a new constant ⌧ , which is necessary as the
change to the Bregman divergence changes the scaling of distances. We discuss this further below.

Recall from Section 4 that Bregman proximal operations follow geodesics. The key idea is that we
are now following a geodesic in the dual connection of � = f

⇤, using the notation of Section 3, which
is a straight-line in the primal coordinates of f due to the flatness of the connection (Section 3). Due
to the flatness property, a simple closed-form solution can be derived by equating the derivative to 0:

rf
⇤(gk)�


x
k�1 � 1

⌘
g
k�1

�
+ ⌧rf

⇤(gk)� ⌧rf
⇤(gk�1) = 0,

therefore g
k = rf

✓
(1 + ⌧)�1


x
k�1 � 1

⌘
g
k�1 + ⌧rf

⇤(gk�1)

�◆
.

This formula gives gk in terms of the derivative of known quantities, as rf
⇤(gk�1) is known from

the previous step as the point at which we evaluated the derivative at. We will denote this argument
to the derivative operation y, so that gk = rf(yk). It no longer holds that gk = rf(xk) after the
change of divergence. Using this relation, y can be computed each step via the update:

y
k =

x
k�1 � 1

⌘ g
k�1 + ⌧y

k�1

1 + ⌧
.

In order to match the accelerated gradient method exactly we need some additional flexibility in the
step size used in the y

k update. To this end we introduce an additional constant ↵ in front of gk�1,
which is 1 for the proximal point variant. The full method is as follows:

Bregman form of the accelerated gradient method

y
k =

x
k�1 � ↵

⌘ g
k�1 + ⌧y

k�1

1 + ⌧
,

g
k = rf(yk),

x
k = x

k�1 � 1

⌘
g
k
. (6)

This is very close to the equational form of Nesterov’s method explored by Lan and Zhou [2017], with
the change that they assume an explicit regularizer is used, whereas we assume strong convexity of f .
Indeed we have chosen our notation so that the constants match. This form is algebraically equivalent
to other known forms of the accelerated gradient method for appropriate choice of constants. Table 1
shows the direct relation between the many known ways of writing the accelerated gradient method
in the strongly-convex case (Proofs of these relations are in the Appendix). When f is µ-strongly
convex and L-smooth, existing theory implies an accelerated geometric convergence rate of at least
1�

p µ
L for the parameter settings [Nesterov, 2013]:

⌘ =
p
µL, ⌧ = L

⌘ , ↵= ⌧
1+⌧ .

In contrast, the primal-dual form of the proximal point method achieves at least that convergence rate
for parameters:

⌘ =
p
µL, ⌧ = 1

⌘ , ↵ = 1.

The difference in ⌧ arises from the difference in the scaling of the Bregman penalty compared to
the Euclidean penalty. The Bregman generator f⇤ is strongly convex with constant 1/L whereas
the Euclidean generator 1

2 k·k
2 is strongly convex with constant 1, so the change in scale requires

rescaling by L.
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This is the inverse of the Euler class of discretizations applied separately to the two terms, which is
the most natural way to discretize an ODE. The resulting proximal point ODE is:

ġ = fg(z, g, t)
.
= �1

⌧
rf

⇤ (g) +
1

⌧
z,

ż = fz(z, g, t)
.
= �1

⌘
g � ↵

⌘
ġ.

We have suppressed the dependence on t of each quantity for notational simplicity. We can treat g
more formally as a point g 2 M on a Hessian manifold M. Then the solution for the g variable of
the ODE is a curve �(t) : I ! T M from an interval I to the tangent bundle on the manifold so the
velocity �̇(t) 2 TgM obeys the ODE: �̇(t) = fg(z, g, t). The right hand side of the ODE is a point
in the tangent space of the manifold at �(t), expressed in Euclidean coordinates.

We can now apply the same partial change of geometry that we used in the discrete case. We will
consider the quantity fg(z, g, t) to be a tangent vector in dual tangent space coordinates For the
� = f

⇤ Hessian manifold, instead of its primal tangent space coordinates (which would leave the
ODE unchanged). The variable g remains in primal coordinates with respect to �, so we must add to
the ODE a change of coordinates for the tangent vector, yielding:

ġ =
�
r2

f
⇤(g)

��1
fg(z, g, t),

where we have used the inverse of Equation 1, with � = f
⇤. We can rewrite this as:

fg(z, g, t) = r2
f
⇤(g)ġ =

d

dt
rf

⇤(g),

giving the AGM ODE system:

d
dtrf

⇤(g) = � 1
⌧rf

⇤ (g) + 1
⌧ z, ż = � 1

⌘ g �
↵
⌘ ġ.

It is now easily seen that the implicit Euler update for the g variable with z fixed now corresponds to
the solution of the Bregman proximal operation considered in the discrete case. So this ODE is a
natural continuous time analogue to the accelerated gradient method.

Convergence in continuous time

Figure 2: Paths for the quadratic problem
f(x) = 1

2x
TAx with A = [2, 1; 1, 3].

The natural analogy to convergence in continuous time is
known as the decay rate of the ODE. A sufficient condition
for an ODE with parameters u = [z; g] to decay with
constant ⇢ is:

ku(t)� u
⇤k  exp (�t⇢) ku(0)� u

⇤k ,

where u⇤ is a fixed point. We can relate this to the discrete
case by noting that exp(�t⇢) = limk!1(1 � t

k⇢)
k, so

given our discrete-time convergence rate is proportional to
(1�

p
µ/L)k, we would expect values of ⇢ proportional

to
p

µ/L if the ODE behaves similarly to the discrete
process. We have been able to establish this result for both
the proximal and AGM ODEs for quadratic objectives
(proof in the Appendix in the supplementary material).
Theorem 1. The proximal and AGM ODEs decay with
at least the following rates for µ-strongly convex and L-
smooth quadratic objective functions when using the same hyper-parameters as in the discrete
case:

⇢prox �
p
µ

p
µ+

p
L
, ⇢AGM � 1

2

p µ
L .

Figure 2 contrasts the convergence of the discrete and continuous variants. The two methods have
quite distinct paths whose shape is shared by their ODE counterparts.
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t)r�(xk�1) + tr�(xk). Here xk�1 and x
k are in primal coordinates and �(t) is in dual coordinates.

The velocity is d
dt�(t) = r�(xk)�r�(xk�1). Contrast to the optimality condition of the Bregman

prox (Equation 3):

�1

⇢
rf(xk) = r�(xk)�r�(xk�1).

For instance, when using the Euclidean penalty the step is:

x
k = argminx

�
f(x) + ⇢

2

��x� x
k�1

��2 .

The final velocity is just xk � x
k�1, and so x

k � x
k�1 = � 1

⇢rf(xk), which is the solution of the
proximal operation.

5 Primal-Dual form of the proximal point method
The proximal point method is the building block from which we will construct the accelerated
gradient method. Consider the basic form of the proximal point method applied to a strongly convex
function f . At each step, the iterate x

k is constructed from x
k�1 by solving the proximal operation

subproblem given an inverse step size parameter ⌘:

x
k = argmin

x

n
f(x) +

⌘

2

��x� x
k�1

��2
o
. (4)

This step can be considered an implicit form of the gradient step, where the gradient is evaluated at
the end-point of the step instead of the beginning:

x
k = x

k�1 � 1

⌘
rf(xk),

which is just the optimality condition of the subproblem in Equation 4, found by taking the derivative
rf(x)+ ⌘x� ⌘x

k�1 to be zero. A remarkable property of the proximal operation becomes apparent
when we rearrange this formula, namely that the solution to the operation is not a single point but a
primal-dual pair, whose weighted sum is equal to the input point:

x
k +

1

⌘
rf(xk) = x

k�1
.

If we define g
k = rf(xk), the primal-dual pair obeys a duality relation: g

k = rf(xk) and
x
k = rf

⇤(gk), which allows us to interchange primal and dual quantities freely. Indeed we may
write the condition in a dual form as:

rf
⇤ �

g
k
�
+

1

⌘
g
k = x

k�1
, (5)

which is the optimality condition for the proximal operation:

g
k = argmin

g

⇢
f
⇤(g) +

1

2⌘

��g � ⌘x
k�1

��2
�
.

Our goal in this section is to express the proximal point method in terms of a dual step, and while this
equation involves the dual function f

⇤, it is not a step in the sense that gk is formed by a proximal
operation from g

k�1
.

We can manipulate this formula further to get an update of the form we want, by simply adding and
subtracting g

k�1 from 5:

rf
⇤ �

g
k
�
+

1

⌘
g
k =

1

⌘
g
k�1 +

✓
x
k�1 � 1

⌘
g
k�1

◆
,

Which gives the updates:

g
k = argmin

g

⇢
f
⇤(g)�

⌧
g, x

k�1 � 1

⌘
g
k�1

�
+

1

2⌘

��g � g
k�1

��2
�
,

x
k = x

k�1 � 1

⌘
g
k
.

We call this the primal-dual form of the proximal point method.
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Figure 1: Illustrative geodesics for f(x) = 1
4 kAxk4 , with A = [2, 1; 1, 3]. Viewing them from both

coordinate systems highlights the duality. Contour lines are for f and f⇤ respectively.

in Rn we are implicitly following a geodesic of this connection. The connection coefficients � (E)k
ij

are all zero when this connection is expressed in Euclidean coordinates. A connection that has
�

k
ij = 0 with respect to some coordinate system is a flat connection.

The Hessian manifold admits another flat connection, which we will call the dual connection, as it
corresponds to straight lines in the dual coordinate system established above. In particular each dual
geodesic can be expressed in primal coordinates �(t) as a solution to the equation:

r� (�(t)) = at+ b,

for vectors a, b representing the initial velocity and point respectively (both represented in dual
coordinates) that depend on the boundary conditions. This is quite easy to solve using the relation
r�

�1 = r�
⇤ discussed above. For instance, a geodesic � : [0, 1] ! M between two arbitrary

points x and y under the dual connection could be computed explicitly in Euclidean coordinates as:

�(t) = r�
⇤ (tr�(y) + (1� t)r�(x)) .

If we instead know the initial velocity we can find the endpoint with:

y = r�
⇤ �r�(x) +H(xk)v

�
. (2)

The flatness of the dual connection �
(D) is crucial to its computability in practice. If we instead try

to compute the geodesic in Euclidean coordinates using the geodesic ODE, we have to work with the
connection coefficients which involve third derivatives of � (taking the form of double those of the
Riemannian connection �

(R)):

�
(D)k
ij (x) = 2� (R)k

ij =
⇥
H(x)�1 (rH(x))i

⇤
kj

,

The Riemannian connection’s geodesics are similarly difficult to compute directly from the ODE
(they also can’t generally be expressed in a simpler form).

4 Bregman proximal operators follow geodesics
Bregman divergences arise in optimization primarily through their use in proximal steps. A Bregman
proximal operation balances finding a minimizer of a given function f with maintaining proximity to
a given point y, measured using a Bregman divergence instead of a distance metric:

x
k = argmin

x

�
f(x) + ⇢B�(x, x

k�1)
 
. (3)

A core application of this would be the mirror descent step [Nemirovski and Yudin, 1983, Beck and
Teboulle, 2003], where the operation is applied to a linearized version of f instead of f directly:

x
k = argmin

x

�⌦
x,rf(xk�1)

↵
+ ⇢B�(x, x

k�1)
 
.

Bregman proximal operations can be interpreted as geodesic steps with respect to the dual connection.
The key idea is that given an input point xk�1, they output a point x such that the velocity of the
connecting geodesic is equal to �r 1

⇢f(x) at x. This velocity is measured in the flat coordinate
system of the connection, the dual coordinates. To see why, consider a geodesic �(t) = (1 �

4

Primal-dual form of the proximal point method

Bregman proximal operators and geodesics

t)r�(xk�1) + tr�(xk). Here xk�1 and x
k are in primal coordinates and �(t) is in dual coordinates.

The velocity is d
dt�(t) = r�(xk)�r�(xk�1). Contrast to the optimality condition of the Bregman

prox (Equation 3):

�1

⇢
rf(xk) = r�(xk)�r�(xk�1).

For instance, when using the Euclidean penalty the step is:

x
k = argminx

�
f(x) + ⇢

2

��x� x
k�1

��2 .

The final velocity is just xk � x
k�1, and so x

k � x
k�1 = � 1

⇢rf(xk), which is the solution of the
proximal operation.

5 Primal-Dual form of the proximal point method
The proximal point method is the building block from which we will construct the accelerated
gradient method. Consider the basic form of the proximal point method applied to a strongly convex
function f . At each step, the iterate x

k is constructed from x
k�1 by solving the proximal operation

subproblem given an inverse step size parameter ⌘:

x
k = argmin

x

n
f(x) +

⌘

2

��x� x
k�1

��2
o
. (4)

This step can be considered an implicit form of the gradient step, where the gradient is evaluated at
the end-point of the step instead of the beginning:

x
k = x

k�1 � 1

⌘
rf(xk),

which is just the optimality condition of the subproblem in Equation 4, found by taking the derivative
rf(x)+ ⌘x� ⌘x

k�1 to be zero. A remarkable property of the proximal operation becomes apparent
when we rearrange this formula, namely that the solution to the operation is not a single point but a
primal-dual pair, whose weighted sum is equal to the input point:

x
k +

1

⌘
rf(xk) = x

k�1
.

If we define g
k = rf(xk), the primal-dual pair obeys a duality relation: g

k = rf(xk) and
x
k = rf

⇤(gk), which allows us to interchange primal and dual quantities freely. Indeed we may
write the condition in a dual form as:

rf
⇤ �

g
k
�
+

1

⌘
g
k = x

k�1
, (5)

which is the optimality condition for the proximal operation:

g
k = argmin

g

⇢
f
⇤(g) +

1

2⌘

��g � ⌘x
k�1

��2
�
.

Our goal in this section is to express the proximal point method in terms of a dual step, and while this
equation involves the dual function f

⇤, it is not a step in the sense that gk is formed by a proximal
operation from g

k�1
.

We can manipulate this formula further to get an update of the form we want, by simply adding and
subtracting g

k�1 from 5:

rf
⇤ �

g
k
�
+

1

⌘
g
k =

1

⌘
g
k�1 +

✓
x
k�1 � 1

⌘
g
k�1

◆
,

Which gives the updates:

g
k = argmin

g

⇢
f
⇤(g)�

⌧
g, x

k�1 � 1

⌘
g
k�1

�
+

1

2⌘

��g � g
k�1

��2
�
,

x
k = x

k�1 � 1

⌘
g
k
.

We call this the primal-dual form of the proximal point method.
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