
ON THE INEFFECTIVENESS OF VARIANCE REDUCED
OPTIMIZATION FOR DEEP LEARNING

Aaron Defazio
Léon Bottou

The application of stochastic variance reduction to optimization has shown remarkable
recent theoretical and practical success. The applicability of these techniques to the
hard non-convex optimization problems encountered during training of modern deep
neural networks is an open problem. We show that naive application of the SVRG
technique and related approaches fail, and explore why.

The SVRG to SGD gradient variance ratio during a run of SVRG. The shaded region
indicates a variance increase, where the SVRG variance is worse than the SGD baseline.

Dotted lines indicate when the step size was reduced. The variance ratio is shown at
different points within each epoch, so that the 2% dots (for instance) indicate the
variance at 1,000 data-points into the 50,000 datapoints consisting of the epoch.

Multiple percentages within the same run are shown at equally spaced epochs.
SVRG fails to show a variance reduction for the majority of each epoch when applied
to modern high-capacity networks, whereas some variance reduction is seem for

smaller networks.

(a) LeNet (b) DenseNet-40-36

(c) Small ResNet (d) ResNet-110

Figure 2: The SVRG to SGD gradient variance ratio during a run of SVRG. The shaded region
indicates a variance increase, where the SVRG variance is worse than the SGD baseline. Dotted
lines indicate when the step size was reduced. The variance ratio is shown at different points within
each epoch, so that the 2% dots (for instance) indicate the variance at 1,000 data-points into the
50,000 datapoints consisting of the epoch. Multiple percentages within the same run are shown at
equally spaced epochs.
SVRG fails to show a variance reduction for the majority of each epoch when applied to modern
high-capacity networks, whereas some variance reduction is seem for smaller networks.

show that no adjustment to the snapshot interval can salvage the method. The SVRG variance can be
kept reasonable (i.e. below the SGD variance) by reducing the duration between snapshots, however
for the ResNet-110 and DenseNet models, even at 11% into an epoch, the SVRG step variance is
already larger than that of SGD, at least during the crucial 10-150 epochs. If we were to perform
snapshots at this frequency the wall-clock cost of the SVRG method would go up by an order of
magnitude compared to SGD, while still under-performing on a per-epoch basis.

Similarly, we can consider performing snapshots at less frequent intervals. Our plots show that the
variance of the SVRG gradient estimate will be approximately 2x the variance of the SGD estimate
on the harder two problems in this case (during epochs 10-150), which certainly will not result in
faster convergence. This is because the correction factor in Equation 1 becomes so out-of-date that it
becomes effectively uncorrelated with the stochastic gradient, and since it’s magnitude is comparable
(the gradient norm decays relatively slowly during optimization for these networks) adding it to the
stochastic gradient results in a doubling of the variance.

4.1 Variance reduction and optimization speed

For sufficiently well-behaved objective functions (such as smooth & strongly convex), we can expect
that an increase of the learning rate results in a increase of the converge rate, up until the learning
rate approaches a limit defined by the curvature (⇡ 1/L for L Lipschitz-smooth functions). This
holds also in the stochastic case for small learning rates, however there is an additional ceiling that
occurs as you increase the learning rate, where the variance of the gradient estimate begins to slow
convergence. Which ceiling comes into effect first determines if a possible variance reduction (such
as from SVRG) can allow for larger learning rates and thus faster convergence. Although clearly

5

Figure 3: Distance moved from the snapshot point, and curvature relative to the snapshot point, at
epoch 50.

a simplified view of the non-differentiable non-convex optimization problem we are considering, it
still offers some insight.

Empirically deep residual networks are known to be constrained by the curvature for a few initial
epochs, and afterwards are constrained by the variance. For example, Goyal et al. [2017] show that
decreasing the variance by increasing the batch-size allows them to proportionally increase the learn-
ing rate for variance reduction factors up to 30 fold. This is strong evidence that a SVR technique
that results in significant variance reduction can potentially improve convergence in practice.

5 Why variance reduction fails

Figure 2 clearly illustrates that for the DenseNet model, SVRG gives no actual variance reduction
for the majority of the optimization run. This also holds for larger ResNet models (plot omitted).
The variance of the SVRG estimator is directly dependent on how similar the gradient is between
the snapshot point x̃ and the current iterate xk. Two phenomena may explain the differences seen
here. If the wk iterate moves too quickly through the optimization landscape, the snapshot point will
be too out-of-date to provide meaningful variance reduction. Alternatively, the gradient may just
change more rapidly in the larger model.

Figure 3 sheds further light on this. The left plot shows how rapidly the current iterate moves within
the same epoch for LeNet and DenseNet models when training using SVRG. The distance moved
from the snapshot point increases significantly faster for the DenseNet model compared to the LeNet
model.

In contrast the right plot shows the curvature change during an epoch, which we estimated as:��� 1
|Si|

P
j2Si

⇥
f 0
j(wk)� f 0

j(w̃)
⇤��� /

��wk � w̃
��,

where Si is a sampled mini-batch. This can be seen as an empirical measure of the Lipschitz smooth-
ness constant. Surprisingly, the measured curvature is very similar for the two models, which sup-
ports the idea that iterate distance is the dominating factor in the lack of variance reduction. The
curvature is highest at the beginning of an epoch because of the lack of smoothness of the objective
(the Lipschitz smoothness is potentially unbounded for non-smooth functions).

Several papers have show encouraging results when using SVRG variants on small MNIST training
problems [Johnson and Zhang, 2013, Lei et al., 2017]. Our failure to show any improvement when
using SVRG on larger problems should not be seen as a refutation of their results. Instead, we
believe it shows a fundamental problem with MNIST as a baseline for optimization comparisons.
Particularly with small neural network architectures, it is not representative of harder deep learning
training problems.

5.1 Smoothness

Since known theoretical results for SVRG apply only to smooth objectives, we also computed the
variance when using the ELU activation function [Clevert et al., 2016], a popular smooth activation
that can be used as a drop-in replacement for ReLU. We did see a small improvement in the degree
of variance reduction when using the ELU. There was still no significant variance reduction on the
DenseNet model.

6

6 Streaming SVRG Variants

In Section 3, we saw that the amount of variance reduction quickly diminished as the optimization
procedure moved away from the snapshot point. One potential fix is to perform snapshots at finer
intervals. To avoid incurring the cost of a full gradient evaluation at each snapshot, the class of
streaming SVRG [Frostig et al., 2015, Lei et al., 2017] methods instead use a mega-batch to compute
the snapshot point. A mega-batch is typically 10-32 times larger than a regular mini-batch. To be
precise, let the mini-batch size be b be and the mega-batch size be B. Streaming SVRG alternates
between computing a snapshot mega-batch gradient g̃ at w̃ = wk, and taking a sequence of SVRG
inner loop steps where a mini-batch Sk is sampled, then a step is taken:

wk+1 = wk � �

"
1

|Sk|
X

i2Sk

(f 0
i(wk)� f 0

i(w̃)) + g̃

#
. (2)

Although the theory suggests taking a random number of these steps, often a fixed m steps is used
in practice, and we follow this procedure as well.

In this formulation the data-points from the mega-batch and subsequent m steps are independent.
Some further variance reduction is potentially possible by sampling the mini-batches for the inner
step from the mega-batch, but at the cost of some bias. This approach has been explored as the
Stochastically Controlled Stochastic Gradient (SCSG) method [Lei and Jordan, 2017].

Figure 4: Streaming SVRG Variance at epoch 50

To investigate the effectiveness of streaming
SVRG methods we produced variance-over-
time plots. We look at the variance of each in-
dividual step after the computation of a mega-
batch, where our mega-batches were taken as
10x larger than our mini-batch size of 128 CI-
FAR10 instances, and 10 inner steps were taken
per snapshot. The data augmentation and batch
norm reset techniques from Section 2 were used
to get the lowest variance possible. The vari-
ance is estimated using the full dataset at each
point.

Figure 4 shows the results at the beginning of
the 50th epoch. In both cases the variance is re-
duced by 10x for the first step, as the two mini-
batch terms cancel in Equation 2, resulting in just the mega-batch being used. The variance quickly
rises thereafter. These results are similar to the non-streaming SVRG method, as we see that much
greater variance reduction is possible for LeNet. Recall that the amortized cost of each step is three
times that of SGD, so for the DenseNet model the amount of variance reduction is not compelling.

7 Convergence rate comparisons

Together with the direct measures of variance reduction in Section 3, we also directly compared the
convergence rate of SGD, SVRG and the streaming method SCSG. The results are shown in Figure
5. For our CIFAR10 experiment, an average of 10 runs is shown for each method, using the same
momentum (0.9) and learning rate (0.1) parameters for each, with a 10-fold reduction in learning
rate at epochs 150 and 225. We were not able to see any improvement from using alternative hyper-
parameters for each method. A comparison was also performed on ImageNet using a ResNet-18
architecture and a single run for each method. Run-to-run variability is much lower for image-net.

The variance reduction seen in SVRG comes at the cost of the introduction of heavy correlation be-
tween consecutive steps. This is why the reduction in variance does not have the direct impact that
increasing batch size or decreasing learning rate has on the convergence rate, and why convergence
theory for VR methods requires careful proof techniques. It is for this reason that the amount of vari-
ance reduction in Figure 4 doesn’t necessarily manifest as a direct improvement in convergence rate
in practice. On the LeNet problem we see that SVRG converges slightly faster than SGD, whereas
on the larger problems including ResNet on ImageNet (Figure 5c) and DenseNet on CIFAR10 they
are a little slower than SGD . This is consistent with the differences in the amount of variance reduc-

7

Distance moved from the snapshot point (left), and curvature (right) relative to the
snapshot point, at epoch 50. Higher capacity networks result in faster movement

through parameter space, but similar curvature as given by the Lipschitz smoothness
constant.

Streaming SVRG approaches using mega-batch snapshots, variance rapidly increases
after the mega-batch, quickly approaching the non-variance reduced baseline for higher

capacity models

In order to achieve state-of-the-art results in most domains, data augmentation is
essential. When applying standard SVRG using gradient recomputation, the use of
random transforms can destroy the prospects of any variance reduction if different
transforms are used for a data-point during the snapshot pass compared to the
following steps. Using a different transform is unfortunately the most natural
implementation when using standard libraries as the transform is applied automatically
as part of the data-pipeline. We propose the use of transform locking, where the
transform used during the snapshot pass is cached and reused during the following
epoch/s.
For SVRG with transform locking, the variance of the step is initially zero at the very
beginning of the epoch, increasing over the course of the epoch. This is the behavior
expected of SVRG on finite sum problems. In contrast, without transform locking the
variance is non-zero at the beginning of the epoch, and uniformly worse.
The handling of data augmentation in finite-sum methods has been previously
considered for the MISO method, which is one of the family of gradient table methods
(as with the storage variant of SVRG). The stored gradients are updated with an
exponential moving average instead of overwriting, which averages over multiple past
transformed-data-point gradients.

Data Augmentation

Complications in practice

Batch Normalization

Batch normalization is another technique that breaks the finite-sum structure
assumption. In batch normalization, mean and variance statistics are calculated within a
mini-batch, for the activations of each layer (typically before application of a
nonlinearity). These statistics are used to normalize the activations. The finite sum
structure no longer applies since the loss on a datapoint depends on the statistics of
the mini-batch it is sampled in.
The interaction of BN with SVRG depends on if storage or recomputation of gradients
is used. When recomputation is used naively, catastrophic divergence occurs in
standard frameworks. The problem is a subtle interaction with the internal
computation of running means and variances, for use at test time.
In order to apply batch normalization at test time, where data may not be mini-batched
or may not have the same distribution as training data, it is necessary to store mean
and variance information at training time for later use. The standard approach is to
keep track of a exponential moving average of the mean and variances computed at
each training step. For instance, PyTorch by default will update the moving average
using the mini-batch mean.
During test time, the network is switched to evaluation mode using model.eval(), and
the stored running mean and variances are then used instead of the internal mini-batch
statistics for normalization. The complication with SVRG is that during training the
gradient evaluations occur both at the current iterate and the snapshot iterate. If the
network is in train mode for both, the EMA will average over activation statistics
between two different points, resulting in poor results and divergence.
Switching the network to evaluation mode mid-step is the obvious solution, however
computing the gradient using the two different sets of normalizations results in
additional introduced variance. We recommend a BN reset approach, where the
normalization statistics are temporarily stored before the w gradient evaluation, and
the stored statistics are used to undo the updated statistics by overwriting afterwards.
This avoids having to modify the batch normalization library code. It is important to use
train mode during the snapshot pass as well, so that the mini-batch statistics match
between the two evaluations.

(a) LeNet on CIFAR10 (b) DenseNet on CIFAR10

(c) ResNet-110 on CIFAR10 (d) ResNet-18 on ImageNet

Figure 5: Test error comparison between SGD, SVRG and SCSG. For the CIFAR10 comparison a
moving average (window size 10) of 10 runs is shown with 1 SE overlay, as results varied signifi-
cantly between runs.

(a) ResNet-50 (b) DenseNet-169

Figure 6: Fine-tuning on ImageNet with SVRG

tion observed in the two cases in Figure 2, and our hypothesis that SVRG performs worse for larger
models. The SCSG variant performs the worst in each comparison.

8 Fine-tuning with SVRG

As we have shown that SVRG appears to only introduce a benefit late in training, we performed
experiments where we turned on SVRG after a fixed number of epochs into training. Using the
standard ResNet-50 architecture on ImageNet, we considered training using SVRG with momentum
from epoch 0, 20, 40, 60 or 80, with SGD with momentum used in prior epochs. Figure 6 shows that
the fine-tuning process did not lead to improved test accuracy at any interval compared to the SGD

8

(a) LeNet on CIFAR10 (b) DenseNet on CIFAR10

(c) ResNet-110 on CIFAR10 (d) ResNet-18 on ImageNet

Figure 5: Test error comparison between SGD, SVRG and SCSG. For the CIFAR10 comparison a
moving average (window size 10) of 10 runs is shown with 1 SE overlay, as results varied signifi-
cantly between runs.

(a) ResNet-50 (b) DenseNet-169

Figure 6: Fine-tuning on ImageNet with SVRG

tion observed in the two cases in Figure 2, and our hypothesis that SVRG performs worse for larger
models. The SCSG variant performs the worst in each comparison.

8 Fine-tuning with SVRG

As we have shown that SVRG appears to only introduce a benefit late in training, we performed
experiments where we turned on SVRG after a fixed number of epochs into training. Using the
standard ResNet-50 architecture on ImageNet, we considered training using SVRG with momentum
from epoch 0, 20, 40, 60 or 80, with SGD with momentum used in prior epochs. Figure 6 shows that
the fine-tuning process did not lead to improved test accuracy at any interval compared to the SGD

8

Fine-tuning on ImageNet with SVRG

Test error comparison between SGD, SVRG and SCSG. For the CIFAR10 comparison a
moving average (window size 10) of 10 runs is shown with 1 SE overlay, as results varied

significantly between runs.

To illustrate the degree of variance reduction achieved by SVRG on practical
problems, we directly computed the variance of the SVRG gradient estimate,
comparing it to the variance of the stochastic gradient used by SGD. To minimize
noise the variance was estimated using a pass over the full dataset, although some
noise remains due to the use of data augmentation.
Ratios below one indicate that variance reduction is occurring, whereas ratios
around two indicate that the control variate is uncorrelated with the stochastic
gradient, leading to an increase in variance. For SVRG to be effective we need a ratio
below 1/3 to offset the additional computational costs of the method. We plot the
variance ratio at multiple points within each epoch as it changes significantly during
each epoch.

To highlight differences introduced by model complexity, we compared four models:
1. The classical LeNet-5 model [lenet], modified to use batch-norm and ReLUs,

with approximately 62 thousand parameters1.
2. A ResNet-18 model [resnet], scaled down to match the model size of the LeNet

model by halving the number of feature planes at each layer. It has
approximately 69 thousand parameters.

3. A ResNet-110 model with 1.7m parameters, as used by [resnet].
4. A wide DenseNet model [densenet] with growth rate 36 and depth 40. It has

approximately 1.5 million parameters and achieves below 5% test error.

As we have shown that SVRG appears to only introduce a benefit late in training, we
performed experiments where we turned on SVRG after a fixed number of epochs into
training. Using the standard ResNet-50 architecture on ImageNet, we considered
training using SVRG with momentum from epoch 0, 20, 40, 60 or 80, with SGD with
momentum used in prior epochs. Figure fig:fine-tuning shows that the fine-tuning
process did not lead to improved test accuracy at any interval compared to the SGD
only baseline. For further validation we evaluated a DenseNet-169 model, which we only
fine-tuned from 60 and 80 epochs out to a total of 90 epochs, due to the much slower
model training. This model also showed no improvement from the fine-tuning
procedure.

