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ON THE INEFFECTIVENESS OF VARIANCE REDUCED
OPTIMIZATION FOR DEEP LEARNING

The application of stochastic variance reduction to optimization has shown remarkable
recent theoretical and practical success. The applicability of these techniques to the
hard non-convex optimization problems encountered during training of modern deep
neural networks is an open problem. We show that naive application of the SVRG
technique and related approaches fail, and explore why.

Complications in practice

Data Augmentation

In order to achieve state-of-the-art results in most domains, data augmentation is
essential. When applying standard SVRG using gradient recomputation, the use of
random transforms can destroy the prospects of any variance reduction if different
transforms are used for a data-point during the snapshot pass compared to the
following steps. Using a different transform is unfortunately the most natural
implementation when using standard libraries as the transform is applied automatically
as part of the data-pipeline. We propose the use of transform locking, where the
transform used during the snapshot pass is cached and reused during the following
epoch/s.

For SVRG with transform locking, the variance of the step is initially zero at the very
beginning of the epoch, increasing over the course of the epoch. This is the behavior
expected of SVRG on finite sum problems. In contrast, without transform locking the
variance is non-zero at the beginning of the epoch, and uniformly worse.

The handling of data augmentation in finite-sum methods has been previously
considered for the MISO method, which is one of the family of gradient table methods
(as with the storage variant of SVRG). The stored gradients are updated with an
exponential moving average instead of overwriting, which averages over multiple past
transformed-data-point gradients.

Batch Normalization

Batch normalization is another technique that breaks the finite-sum structure
assumption. In batch normalization, mean and variance statistics are calculated within a
mini-batch, for the activations of each layer (typically before application of a
nonlinearity). These statistics are used to normalize the activations. The finite sum
structure no longer applies since the loss on a datapoint depends on the statistics of
the mini-batch it is sampled in.

The interaction of BN with SVRG depends on if storage or recomputation of gradients
is used. When recomputation is used naively, catastrophic divergence occurs in
standard frameworks. The problem is a subtle interaction with the internal
computation of running means and variances, for use at test time.

In order to apply batch normalization at test time, where data may not be mini-batched
or may not have the same distribution as training data, it is necessary to store mean
and variance information at training time for later use. The standard approach is to
keep track of a exponential moving average of the mean and variances computed at
each training step. For instance, PyTorch by default will update the moving average
using the mini-batch mean.

During test time, the network is switched to evaluation mode using model.eval(), and
the stored running mean and variances are then used instead of the internal mini-batch
statistics for normalization. The complication with SVRG is that during training the
gradient evaluations occur both at the current iterate and the snapshot iterate. If the
network is in train mode for both, the EMA will average over activation statistics
between two different points, resulting in poor results and divergence.

Switching the network to evaluation mode mid-step is the obvious solution, however
computing the gradient using the two different sets of normalizations results in
additional introduced variance. We recommend a BN reset approach, where the
normalization statistics are temporarily stored before the w gradient evaluation, and
the stored statistics are used to undo the updated statistics by overwriting afterwards.
This avoids having to modify the batch normalization library code. It is important to use
train mode during the snapshot pass as well, so that the mini-batch statistics match
between the two evaluations.

To illustrate the degree of variance reduction achieved by SVRG on practical
problems, we directly computed the variance of the SVRG gradient estimate,
comparing it to the variance of the stochastic gradient used by SGD. To minimize
noise the variance was estimated using a pass over the full dataset, although some
noise remains due to the use of data augmentation.

Ratios below one indicate that variance reduction is occurring, whereas ratios
around two indicate that the control variate is uncorrelated with the stochastic
gradient, leading to an increase in variance. For SVRG to be effective we need a ratio
below 1/3 to offset the additional computational costs of the method. We plot the
variance ratio at multiple points within each epoch as it changes significantly during
each epoch.

To highlight differences introduced by model complexity, we compared four models:

1. The classical LeNet-5 model [lenet], modified to use batch-norm and RelLUs,
with approximately 62 thousand parameters..

2. A ResNet-18 model [resnet], scaled down to match the model size of the LeNet
model by halving the number of feature planes at each layer. It has
approximately 69 thousand parameters.

3. A ResNet-110 model with 1.7m parameters, as used by [resnet].

4. A wide DenseNet model [densenet] with growth rate 36 and depth 4o. It has
approximately 1.5 million parameters and achieves below 5% test error.
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The SVRG to SGD gradient variance ratio during a run of SVRG. The shaded region
indicates a variance increase, where the SVRG variance is worse than the SGD baseline.
Dotted lines indicate when the step size was reduced. The variance ratio is shown at
different points within each epoch, so that the 2% dots (for instance) indicate the
variance at 1,000 data-points into the 50,000 datapoints consisting of the epoch.
Multiple percentages within the same run are shown at equally spaced epochs.
SVRG fails to show a variance reduction for the majority of each epoch when applied
to modern high-capacity networks, whereas some variance reduction is seem for
smaller networks.
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Distance moved from the snapshot point (left), and curvature (right) relative to the
snapshot point, at epoch 50. Higher capacity networks result in faster movement
through parameter space, but similar curvature as given by the Lipschitz smoothness
constant.
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Test error comparison between SGD, SVRG and SCSG. For the CIFART0 comparison a
moving average (window size 10) of 10 runs is shown with 1 SE overlay, as results varied
significantly between runs.

As we have shown that SVRG appears to only introduce a benefit late in training, we
performed experiments where we turned on SVRG after a fixed number of epochs into
training. Using the standard ResNet-50 architecture on ImageNet, we considered
training using SVRG with momentum from epoch 0, 20, 40, 60 or 80, with SGD with
momentum used in prior epochs. Figure fig:fine-tuning shows that the fine-tuning
process did not lead to improved test accuracy at any interval compared to the SGD
only baseline. For further validation we evaluated a DenseNet-169 model, which we only
fine-tuned from 60 and 80 epochs out to a total of 90 epochs, due to the much slower
model training. This model also showed no improvement from the fine-tuning
procedure.
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Iterations after snapshot
Streaming SVRG approaches using mega-batch snapshots, variance rapidly increases

after the mega-batch, quickly approaching the non-variance reduced baseline for higher
capacity models




